These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 26976571)
1. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Molitor C; Mauracher SG; Rompel A Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571 [TBL] [Abstract][Full Text] [Related]
2. Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics. Molitor C; Mauracher SG; Pargan S; Mayer RL; Halbwirth H; Rompel A Planta; 2015 Sep; 242(3):519-37. PubMed ID: 25697287 [TBL] [Abstract][Full Text] [Related]
3. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Kampatsikas I; Pretzler M; Rompel A Angew Chem Int Ed Engl; 2020 Nov; 59(47):20940-20945. PubMed ID: 32701181 [TBL] [Abstract][Full Text] [Related]
4. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. Kaintz C; Molitor C; Thill J; Kampatsikas I; Michael C; Halbwirth H; Rompel A FEBS Lett; 2014 Sep; 588(18):3417-26. PubMed ID: 25109778 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1). Kaintz C; Mayer RL; Jirsa F; Halbwirth H; Rompel A FEBS Lett; 2015 Mar; 589(7):789-97. PubMed ID: 25697959 [TBL] [Abstract][Full Text] [Related]
6. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora. Molitor C; Mauracher SG; Rompel A Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):746-51. PubMed ID: 26057806 [TBL] [Abstract][Full Text] [Related]
7. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis. Panis F; Kampatsikas I; Bijelic A; Rompel A Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350 [TBL] [Abstract][Full Text] [Related]
9. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Kampatsikas I; Bijelic A; Pretzler M; Rompel A Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094 [TBL] [Abstract][Full Text] [Related]
10. Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. Nakayama T; Sato T; Fukui Y; Yonekura-Sakakibara K; Hayashi H; Tanaka Y; Kusumi T; Nishino T FEBS Lett; 2001 Jun; 499(1-2):107-11. PubMed ID: 11418122 [TBL] [Abstract][Full Text] [Related]
11. Type-3 copper proteins: recent advances on polyphenol oxidases. Kaintz C; Mauracher SG; Rompel A Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353 [TBL] [Abstract][Full Text] [Related]
12. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases. Sanchez-Amat A; Solano F Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646 [TBL] [Abstract][Full Text] [Related]
13. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies. Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Kampatsikas I; Bijelic A; Rompel A Sci Rep; 2019 Mar; 9(1):4022. PubMed ID: 30858490 [TBL] [Abstract][Full Text] [Related]
15. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Kampatsikas I; Rompel A Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057 [TBL] [Abstract][Full Text] [Related]
16. The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. Hakulinen N; Gasparetti C; Kaljunen H; Kruus K; Rouvinen J J Biol Inorg Chem; 2013 Dec; 18(8):917-29. PubMed ID: 24043469 [TBL] [Abstract][Full Text] [Related]
17. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Kampatsikas I; Bijelic A; Pretzler M; Rompel A Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733 [TBL] [Abstract][Full Text] [Related]
18. A specific amino acid residue in the catalytic site of dandelion polyphenol oxidases acts as 'selector' for substrate specificity. Prexler SM; Singh R; Moerschbacher BM; Dirks-Hofmeister ME Plant Mol Biol; 2018 Jan; 96(1-2):151-164. PubMed ID: 29218491 [TBL] [Abstract][Full Text] [Related]
19. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies. Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of a plant catechol oxidase containing a dicopper center. Klabunde T; Eicken C; Sacchettini JC; Krebs B Nat Struct Biol; 1998 Dec; 5(12):1084-90. PubMed ID: 9846879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]