BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 26976593)

  • 1. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
    Méheust R; Zelzion E; Bhattacharya D; Lopez P; Bapteste E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3579-84. PubMed ID: 26976593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.
    Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J
    Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga.
    Douglas SE
    Biosystems; 1992; 28(1-3):57-68. PubMed ID: 1292667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosymbiosis: double-take on plastid origins.
    Archibald JM
    Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastid genes in a non-photosynthetic dinoflagellate.
    Sanchez-Puerta MV; Lippmeier JC; Apt KE; Delwiche CF
    Protist; 2007 Jan; 158(1):105-17. PubMed ID: 17150410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes.
    Calderon RH; Strand Å
    Curr Opin Plant Biol; 2021 Oct; 63():102093. PubMed ID: 34390927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic connectivity as a driver of host and endosymbiont integration.
    Karkar S; Facchinelli F; Price DC; Weber AP; Bhattacharya D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10208-15. PubMed ID: 25825767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2018; 1829():17-35. PubMed ID: 29987712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastids and protein targeting.
    McFadden GI
    J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.
    Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW
    Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.