These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 26976685)
1. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Ow YX; Vogel N; Collier CJ; Holtum JA; Flores F; Uthicke S Sci Rep; 2016 Mar; 6():23093. PubMed ID: 26976685 [TBL] [Abstract][Full Text] [Related]
2. Different strategies of nitrogen acquisition in two tropical seagrasses under nitrogen enrichment. Viana IG; Saavedra-Hortúa DA; Mtolera M; Teichberg M New Phytol; 2019 Aug; 223(3):1217-1229. PubMed ID: 31059120 [TBL] [Abstract][Full Text] [Related]
3. Limited toxicity of NH(x) pulses on an early and late successional tropical seagrass species: interactions with pH and light level. Christianen MJ; van der Heide T; Bouma TJ; Roelofs JG; van Katwijk MM; Lamers LP Aquat Toxicol; 2011 Jul; 104(1-2):73-9. PubMed ID: 21536012 [TBL] [Abstract][Full Text] [Related]
4. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044 [TBL] [Abstract][Full Text] [Related]
5. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification. Ow YX; Uthicke S; Collier CJ PLoS One; 2016; 11(3):e0150352. PubMed ID: 26938454 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Borum J; Pedersen O; Kotula L; Fraser MW; Statton J; Colmer TD; Kendrick GA Plant Cell Environ; 2016 Jun; 39(6):1240-50. PubMed ID: 26476101 [TBL] [Abstract][Full Text] [Related]
7. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Pfister CA; Cardini U; Mirasole A; Montilla LM; Veseli I; Gattuso JP; Teixido N Sci Rep; 2023 Nov; 13(1):19996. PubMed ID: 37968499 [TBL] [Abstract][Full Text] [Related]
8. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Ruocco M; Musacchia F; Olivé I; Costa MM; Barrote I; Santos R; Sanges R; Procaccini G; Silva J Mol Ecol; 2017 Aug; 26(16):4241-4259. PubMed ID: 28614601 [TBL] [Abstract][Full Text] [Related]
9. Effects of CO(2) enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. Jiang ZJ; Huang XP; Zhang JP J Integr Plant Biol; 2010 Oct; 52(10):904-13. PubMed ID: 20883442 [TBL] [Abstract][Full Text] [Related]
10. Determining light stress responses for a tropical multi-species seagrass assemblage. Statton J; McMahon K; Lavery P; Kendrick GA Mar Pollut Bull; 2018 Mar; 128():508-518. PubMed ID: 29571402 [TBL] [Abstract][Full Text] [Related]
11. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance. Deyanova D; Gullström M; Lyimo LD; Dahl M; Hamisi MI; Mtolera MSP; Björk M PLoS One; 2017; 12(7):e0181386. PubMed ID: 28704565 [TBL] [Abstract][Full Text] [Related]
12. Acidification alleviates the inhibition of hyposaline stress on physiological performance of tropical seagrass Thalassia hemprichii. Shi Z; Zhao M; Wang K; Ma S; Luo H; Han Q; Shi Y Mar Pollut Bull; 2024 Aug; 205():116642. PubMed ID: 38941803 [TBL] [Abstract][Full Text] [Related]
13. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species. Collier CJ; Ow YX; Langlois L; Uthicke S; Johansson CL; O'Brien KR; Hrebien V; Adams MP Front Plant Sci; 2017; 8():1446. PubMed ID: 28878790 [TBL] [Abstract][Full Text] [Related]
14. The effects of El Niño-Southern Oscillation events on intertidal seagrass beds over a long-term timescale. Lin HJ; Lee CL; Peng SE; Hung MC; Liu PJ; Mayfield AB Glob Chang Biol; 2018 Oct; 24(10):4566-4580. PubMed ID: 30030884 [TBL] [Abstract][Full Text] [Related]
15. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO Shi D; Hong H; Su X; Liao L; Chang S; Lin W J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [TBL] [Abstract][Full Text] [Related]
16. Marine heatwave and reduced light scenarios cause species-specific metabolomic changes in seagrasses under ocean warming. Jung EMU; Abdul Majeed NAB; Booth MW; Austin R; Sinclair EA; Fraser MW; Martin BC; Oppermann LMF; Bollen M; Kendrick GA New Phytol; 2023 Sep; 239(5):1692-1706. PubMed ID: 37357353 [TBL] [Abstract][Full Text] [Related]
17. Temporal and spatial variations of air-sea CO Liu S; Liang J; Jiang Z; Li J; Wu Y; Fang Y; Ren Y; Zhang X; Huang X; Macreadie PI Sci Total Environ; 2024 Feb; 910():168684. PubMed ID: 37981158 [TBL] [Abstract][Full Text] [Related]
18. Structural and physiological responses of Halodule wrightii to ocean acidification. Schneider G; Horta PA; Calderon EN; Castro C; Bianchini A; da Silva CRA; Brandalise I; Barufi JB; Silva J; Rodrigues AC Protoplasma; 2018 Mar; 255(2):629-641. PubMed ID: 29043573 [TBL] [Abstract][Full Text] [Related]
19. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification. Long C; Zhang Y; Wei Z; Long L Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500 [TBL] [Abstract][Full Text] [Related]
20. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization. Dier M; Meinen R; Erbs M; Kollhorst L; Baillie CK; Kaufholdt D; Kücke M; Weigel HJ; Zörb C; Hänsch R; Manderscheid R Glob Chang Biol; 2018 Jan; 24(1):e40-e54. PubMed ID: 28715112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]