BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 26976826)

  • 21. Regulation of Memory CD8+ T Cell Differentiation by MicroRNAs.
    Zhang Z; Zhang C; Li F; Zhang B; Zhang Y
    Cell Physiol Biochem; 2018; 47(6):2187-2198. PubMed ID: 30011396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chimeric antigen receptor T cell persistence and memory cell formation.
    McLellan AD; Ali Hosseini Rad SM
    Immunol Cell Biol; 2019 Aug; 97(7):664-674. PubMed ID: 31009109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
    Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M
    Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin of CD8+ effector and memory T cell subsets.
    Stemberger C; Neuenhahn M; Buchholz VR; Busch DH
    Cell Mol Immunol; 2007 Dec; 4(6):399-405. PubMed ID: 18163951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effector CD4 T cells are biochemically distinct from the memory subset: evidence for long-term persistence of effectors in vivo.
    Ahmadzadeh M; Hussain SF; Farber DL
    J Immunol; 1999 Sep; 163(6):3053-63. PubMed ID: 10477569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of endogenous T cells for adoptive transfer.
    Yee C
    Immunol Rev; 2014 Jan; 257(1):250-63. PubMed ID: 24329802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity.
    Hinrichs CS; Borman ZA; Cassard L; Gattinoni L; Spolski R; Yu Z; Sanchez-Perez L; Muranski P; Kern SJ; Logun C; Palmer DC; Ji Y; Reger RN; Leonard WJ; Danner RL; Rosenberg SA; Restifo NP
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17469-74. PubMed ID: 19805141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy.
    Crompton JG; Sukumar M; Restifo NP
    Immunol Rev; 2014 Jan; 257(1):264-276. PubMed ID: 24329803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adoptive immunotherapy for cancer.
    Ruella M; Kalos M
    Immunol Rev; 2014 Jan; 257(1):14-38. PubMed ID: 24329787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells.
    Ikeda H
    Int Immunol; 2016 Jul; 28(7):349-53. PubMed ID: 27127191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adoptive T-cell immunotherapy of cancer.
    Li Q; Chang AE
    Cytokines Cell Mol Ther; 1999 Jun; 5(2):105-17. PubMed ID: 10515683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leishmania infantum antigens modulate memory cell subsets of liver resident T lymphocyte.
    Rodrigues A; Claro M; Alexandre-Pires G; Santos-Mateus D; Martins C; Valério-Bolas A; Rafael-Fernandes M; Pereira MA; Pereira da Fonseca I; Tomás AM; Santos-Gomes G
    Immunobiology; 2017 Feb; 222(2):409-422. PubMed ID: 27615509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human cell-based artificial antigen-presenting cells for cancer immunotherapy.
    Butler MO; Hirano N
    Immunol Rev; 2014 Jan; 257(1):191-209. PubMed ID: 24329798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.
    Houot R; Schultz LM; Marabelle A; Kohrt H
    Cancer Immunol Res; 2015 Oct; 3(10):1115-22. PubMed ID: 26438444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting cytokines in adoptive T-cell therapy of cancer.
    Petrozziello E; Sturmheit T; Mondino A
    Immunotherapy; 2015; 7(5):573-84. PubMed ID: 26065481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing adoptive T cell immunotherapy with microRNA therapeutics.
    Ji Y; Hocker JD; Gattinoni L
    Semin Immunol; 2016 Feb; 28(1):45-53. PubMed ID: 26710685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection bias: maintaining less-differentiated T cells for adoptive immunotherapy.
    Xu Y; Dotti G
    J Clin Invest; 2016 Jan; 126(1):35-7. PubMed ID: 26657855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the CD8+ T effector to memory transition in adoptive T-cell antitumor immunotherapy.
    Rolle CE; Carrio R; Malek TR
    Cancer Res; 2008 Apr; 68(8):2984-92. PubMed ID: 18413768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Context-Dependent Role for IL-21 in Modulating the Differentiation, Distribution, and Abundance of Effector and Memory CD8 T Cell Subsets.
    Tian Y; Cox MA; Kahan SM; Ingram JT; Bakshi RK; Zajac AJ
    J Immunol; 2016 Mar; 196(5):2153-66. PubMed ID: 26826252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue-resident memory T cells.
    Schenkel JM; Masopust D
    Immunity; 2014 Dec; 41(6):886-97. PubMed ID: 25526304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.