These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 2697747)
1. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. Ramos S; Balbín M; Raposo M; Valle E; Pardo LA J Gen Microbiol; 1989 Sep; 135(9):2413-22. PubMed ID: 2697747 [TBL] [Abstract][Full Text] [Related]
2. Internal acidification and cAMP increase are not correlated in Saccharomyces cerevisiae. Eraso P; Mazón MJ; Gancedo JM Eur J Biochem; 1987 Jun; 165(3):671-4. PubMed ID: 3036514 [TBL] [Abstract][Full Text] [Related]
3. External K+ affects the internal acidification caused by the addition of glucose to yeast cells. Valle E; Bergillos L; Ramos S J Gen Microbiol; 1987 Mar; 133(3):535-8. PubMed ID: 2821164 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Haworth RS; Lemire BD; Crandall D; Cragoe EJ; Fliegel L Biochim Biophys Acta; 1991 Dec; 1098(1):79-89. PubMed ID: 1661160 [TBL] [Abstract][Full Text] [Related]
5. Quantitative physiological study of the fast dynamics in the intracellular pH of Saccharomyces cerevisiae in response to glucose and ethanol pulses. Kresnowati MT; Suarez-Mendez CM; van Winden WA; van Gulik WM; Heijnen JJ Metab Eng; 2008 Jan; 10(1):39-54. PubMed ID: 18054509 [TBL] [Abstract][Full Text] [Related]
6. Transient increase in Ca2+ influx in Saccharomyces cerevisiae in response to glucose: effects of intracellular acidification and cAMP levels. Eilam Y; Othman M; Halachmi D J Gen Microbiol; 1990 Dec; 136(12):2537-43. PubMed ID: 1964173 [TBL] [Abstract][Full Text] [Related]
7. Different sources of acidity in glucose-elicited extracellular acidification in the yeast Saccharomyces cerevisiae. Lapathitis G; Kotyk A Biochem Mol Biol Int; 1998 Dec; 46(5):973-8. PubMed ID: 9861451 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH. Thevelein JM; Beullens M; Honshoven F; Hoebeeck G; Detremerie K; Griewel B; den Hollander JA; Jans AW J Gen Microbiol; 1987 Aug; 133(8):2197-205. PubMed ID: 2832519 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of control of adenylate cyclase activity in yeast by fermentable sugars and carbonyl cyanide m-chlorophenylhydrazone. Purwin C; Nicolay K; Scheffers WA; Holzer H J Biol Chem; 1986 Jul; 261(19):8744-9. PubMed ID: 3522579 [TBL] [Abstract][Full Text] [Related]
10. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Beullens M; Mbonyi K; Geerts L; Gladines D; Detremerie K; Jans AW; Thevelein JM Eur J Biochem; 1988 Feb; 172(1):227-31. PubMed ID: 2831059 [TBL] [Abstract][Full Text] [Related]
11. Metabolic effects of benzoate and sorbate in the yeast Saccharomyces cerevisiae at neutral pH. Burlini N; Pellegrini R; Facheris P; Tortora P; Guerritore A Arch Microbiol; 1993; 159(3):220-4. PubMed ID: 8386922 [TBL] [Abstract][Full Text] [Related]
12. Both glucose-type monosaccharides and one of their metabolites are required for activation of yeast plasma membrane H(+)-ATPase. Kotyk A; Georghiou G Cell Biol Int; 1994 Aug; 18(8):813-7. PubMed ID: 7804158 [TBL] [Abstract][Full Text] [Related]
13. Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. Rosa MF; Sá-Correia I FEMS Microbiol Lett; 1996 Jan; 135(2-3):271-4. PubMed ID: 8595868 [TBL] [Abstract][Full Text] [Related]
14. A pyruvate-proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle. Vanderheyden N; Wong J; Docampo R Biochem J; 2000 Feb; 346 Pt 1(Pt 1):53-62. PubMed ID: 10657239 [TBL] [Abstract][Full Text] [Related]
15. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification. Fernandes AR; Sá-Correia I Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007 [TBL] [Abstract][Full Text] [Related]
16. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related]
17. Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay. Malác J; Urbánková E; Sigler K; Gásková D Int J Biochem Cell Biol; 2005 Dec; 37(12):2536-43. PubMed ID: 16061415 [TBL] [Abstract][Full Text] [Related]
18. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593 [TBL] [Abstract][Full Text] [Related]
19. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine. Eilam Y; Lavi H; Grossowicz N J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026 [TBL] [Abstract][Full Text] [Related]
20. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Bisson LF; Fraenkel DG Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1730-4. PubMed ID: 6300872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]