These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26977693)

  • 1. Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering.
    Li T; Li F; Li Z; Sun C; Tong J; Fang W; Men Z
    Opt Lett; 2016 Mar; 41(6):1297-300. PubMed ID: 26977693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the hydrogen bond quantum nature in liquid water and heavy water on stimulated Raman scattering.
    Li F; Li Z; Li S; Fang W; Sun C; Men Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():462-464. PubMed ID: 29133131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding network dynamics of 1,2-propanediol-water binary solutions by Raman spectroscopy and stimulated Raman scattering.
    Xu Y; Xing L; Cao X; Li D; Men Z; Li Z; Wang S; Sun C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121825. PubMed ID: 36081192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si quantum dots enhanced hydrogen bonds networks of liquid water in a stimulated Raman scattering process.
    Wang Y; Li F; Li Z; Sun C; Men Z
    Opt Lett; 2019 Jul; 44(14):3450-3453. PubMed ID: 31305545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigated coherent anti-Stokes Raman scattering in the process of cascaded stimulated Raman scattering in liquid and ice-Ih D
    Liu X; Wang Y; Li S; Fang W; Gong N; Sun C; Men Z
    J Chem Phys; 2021 Dec; 155(24):244304. PubMed ID: 34972362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Stimulated Raman Scattering by a Pressure-Controlled Shock Wave in Liquid Water.
    Li F; Wang Y; Li Z; Men Z; Sun C
    J Phys Chem Lett; 2019 Sep; 10(17):4812-4816. PubMed ID: 31390212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulated Raman scattering of lattice translational modes in liquid heavy water.
    Li Z; Li Z; Zhou M; Wang Y; Men Z; Sun C
    Opt Lett; 2012 Apr; 37(8):1319-21. PubMed ID: 22513672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure.
    Bergmann U; Di Cicco A; Wernet P; Principi E; Glatzel P; Nilsson A
    J Chem Phys; 2007 Nov; 127(17):174504. PubMed ID: 17994824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface.
    Li Z; Li H; Fang W; Wang S; Sun C; Li Z; Men Z
    Opt Lett; 2015 Jul; 40(14):3253-5. PubMed ID: 26176442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the hydrogen bonding in ice Ih by first-principles density function methods.
    Zhang P; Tian L; Zhang ZP; Shao G; Li JC
    J Chem Phys; 2012 Jul; 137(4):044504. PubMed ID: 22852628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water.
    Wernet P; Testemale D; Hazemann JL; Argoud R; Glatzel P; Pettersson LG; Nilsson A; Bergmann U
    J Chem Phys; 2005 Oct; 123(15):154503. PubMed ID: 16252958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: sensitivity to anharmonic dynamics and local hydrogen bond network structure.
    Saito S; Ohmine I
    J Chem Phys; 2006 Aug; 125(8):084506. PubMed ID: 16965028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectra of gas hydrates--differences and analogies to ice 1h and (gas saturated) water.
    Schicks JM; Erzinger J; Ziemann MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2399-403. PubMed ID: 16029863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the transient "free" OH radical generated in H
    Li F; Ma Z; Wang S; Li T; Sun C; Li Z; Men Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():246-249. PubMed ID: 28043068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the first coordination shell in liquid water.
    Wernet P; Nordlund D; Bergmann U; Cavalleri M; Odelius M; Ogasawara H; Näslund LA; Hirsch TK; Ojamäe L; Glatzel P; Pettersson LG; Nilsson A
    Science; 2004 May; 304(5673):995-9. PubMed ID: 15060287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman resonance effect in liquid water.
    Pastorczak M; Kozanecki M; Ulanski J
    J Phys Chem A; 2008 Oct; 112(43):10705-7. PubMed ID: 18834100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.
    Bennett CJ; Brotton SJ; Jones BM; Misra AK; Sharma SK; Kaiser RI
    Anal Chem; 2013 Jun; 85(12):5659-65. PubMed ID: 23662702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of non-hydrogen-bonded molecules in the oxygen K-edge spectrum of ice.
    Pylkkänen T; Giordano VM; Chervin JC; Sakko A; Hakala M; Soininen JA; Hämäläinen K; Monaco G; Huotari S
    J Phys Chem B; 2010 Mar; 114(11):3804-8. PubMed ID: 20187617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Raman scattering study of water up to 600 MPa at 290 K].
    Sun Q; Zheng HF; Xie HS; Xu JA; Hines E
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Aug; 24(8):963-5. PubMed ID: 15766120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced stimulated Raman scattering of water by KOH.
    Wang Y; Li F; Wang C; Fang W; Sun C; Men Z
    Opt Express; 2020 Mar; 28(7):9533-9540. PubMed ID: 32225559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.