BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26977716)

  • 1. Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers.
    Xu H; Jones S; Choi BC; Gordon R
    Nano Lett; 2016 Apr; 16(4):2639-43. PubMed ID: 26977716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing nanoparticles using a double nanohole optical trap.
    Kotnala A; DePaoli D; Gordon R
    Lab Chip; 2013 Oct; 13(20):4142-6. PubMed ID: 23969596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays.
    Duong B; Khurshid H; Gangopadhyay P; Devkota J; Stojak K; Srikanth H; Tetard L; Norwood RA; Peyghambarian N; Phan MH; Thomas J
    Small; 2014 Jul; 10(14):2840-8. PubMed ID: 24706405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins.
    Ravindranath AL; Shariatdoust MS; Mathew S; Gordon R
    Opt Express; 2019 May; 27(11):16184-16194. PubMed ID: 31163802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double nanohole optical trapping: dynamics and protein-antibody co-trapping.
    Zehtabi-Oskuie A; Jiang H; Cyr BR; Rennehan DW; Al-Balushi AA; Gordon R
    Lab Chip; 2013 Jul; 13(13):2563-8. PubMed ID: 23429640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.
    Kim JD; Lee YG
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Egg White Protein Composition with Double Nanohole Optical Tweezers.
    Hacohen N; Ip CJX; Gordon R
    ACS Omega; 2018 May; 3(5):5266-5272. PubMed ID: 31458737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles.
    Gelfand RM; Wheaton S; Gordon R
    Opt Lett; 2014 Nov; 39(22):6415-7. PubMed ID: 25490482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular weight characterization of single globular proteins using optical nanotweezers.
    Wheaton S; Gordon R
    Analyst; 2015 Jul; 140(14):4799-803. PubMed ID: 25739349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exosomes trapping, manipulation and size-based separation using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nanoscale Adv; 2023 May; 5(11):2973-2978. PubMed ID: 37260502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective manipulation of single chiral nanoparticles using optical tweezers.
    Ali R; Pinheiro FA; Dutra RS; Rosa FSS; Maia Neto PA
    Nanoscale; 2020 Feb; 12(8):5031-5037. PubMed ID: 32067004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of Ni-nitrilotriacetic acid bearing poly(methacrylic acid) coated superparamagnetic magnetite nanoparticles.
    Tural B; Kaya M; Ozkan N; Volkan M
    J Nanosci Nanotechnol; 2008 Feb; 8(2):695-701. PubMed ID: 18464394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.
    Shan X; Wang F; Wang D; Wen S; Chen C; Di X; Nie P; Liao J; Liu Y; Ding L; Reece PJ; Jin D
    Nat Nanotechnol; 2021 May; 16(5):531-537. PubMed ID: 33603239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic-based high-throughput optical trapping of nanoparticles.
    Kotnala A; Zheng Y; Fu J; Cheng W
    Lab Chip; 2017 Jun; 17(12):2125-2134. PubMed ID: 28561826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.