These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26978039)

  • 1. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.
    Ostadhossein A; Kim SY; Cubuk ED; Qi Y; van Duin AC
    J Phys Chem A; 2016 Apr; 120(13):2114-27. PubMed ID: 26978039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistics of the lithiation of oxidized silicon (SiO
    Jung H; Yeo BC; Lee KR; Han SS
    Phys Chem Chem Phys; 2016 Nov; 18(47):32078-32086. PubMed ID: 27819103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.
    Kim SY; Ostadhossein A; van Duin AC; Xiao X; Gao H; Qi Y
    Phys Chem Chem Phys; 2016 Feb; 18(5):3706-15. PubMed ID: 26760786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials.
    Islam MM; Ostadhossein A; Borodin O; Yeates AT; Tipton WW; Hennig RG; Kumar N; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3383-93. PubMed ID: 25529209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.
    An Y; Wood BC; Ye J; Chiang YM; Wang YM; Tang M; Jiang H
    Phys Chem Chem Phys; 2015 Jul; 17(27):17718-28. PubMed ID: 26082019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries.
    Bhati M; Nguyen QA; Biswal SL; Senftle TP
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41956-41967. PubMed ID: 34432417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries.
    Ma R; Liu Y; He Y; Gao M; Pan H
    J Phys Chem Lett; 2012 Dec; 3(23):3555-8. PubMed ID: 26290987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface SiO
    Schnabel M; Harvey SP; Arca E; Stetson C; Teeter G; Ban C; Stradins P
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27017-27028. PubMed ID: 32407075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over-Lithiation Regulation of Silicon-Based Anodes for High-Energy Lithium-Ion batteries.
    Wang X; Tan Y; Wang W; Sun Y
    ChemSusChem; 2024 Jun; ():e202400971. PubMed ID: 38877868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic Compositional Expansion and Chemical Potential of Lithiated SiO
    Moon J; Park MS; Cho M
    ACS Appl Mater Interfaces; 2019 May; 11(21):19183-19190. PubMed ID: 31084026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM.
    Bordes A; De Vito E; Haon C; Secouard C; Montani A; Marcus P
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27853-62. PubMed ID: 26618212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.