BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26978480)

  • 1. Potentiometric Measurements of Semiconductor Nanocrystal Redox Potentials.
    Carroll GM; Brozek CK; Hartstein KH; Tsui EY; Gamelin DR
    J Am Chem Soc; 2016 Apr; 138(13):4310-3. PubMed ID: 26978480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the surface of colloidal nanomaterials with potentiometry in situ.
    Fedin I; Talapin DV
    J Am Chem Soc; 2014 Aug; 136(32):11228-31. PubMed ID: 25066770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Potentials of Colloidal n-Type ZnO Nanocrystals: Effects of Confinement, Electron Density, and Fermi-Level Pinning by Aldehyde Hydrogenation.
    Carroll GM; Schimpf AM; Tsui EY; Gamelin DR
    J Am Chem Soc; 2015 Sep; 137(34):11163-9. PubMed ID: 26263400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals.
    Son JS; Yu JH; Kwon SG; Lee J; Joo J; Hyeon T
    Adv Mater; 2011 Jul; 23(28):3214-9. PubMed ID: 21894625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states.
    Amelia M; Impellizzeri S; Monaco S; Yildiz I; Silvi S; Raymo FM; Credi A
    Chemphyschem; 2011 Aug; 12(12):2280-8. PubMed ID: 21698742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution.
    Zou G; Ju H
    Anal Chem; 2004 Dec; 76(23):6871-6. PubMed ID: 15571335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CdSe nanocrystal based chem-/bio- sensors.
    Somers RC; Bawendi MG; Nocera DG
    Chem Soc Rev; 2007 Apr; 36(4):579-91. PubMed ID: 17387407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamellar envelopes of semiconductor nanocrystals.
    Lee A; Coombs NA; Gourevich I; Kumacheva E; Scholes GD
    J Am Chem Soc; 2009 Jul; 131(29):10182-8. PubMed ID: 19569680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature synthesis of CdSe nanocrystal quantum dots.
    Siy JT; Brauser EM; Bartl MH
    Chem Commun (Camb); 2011 Jan; 47(1):364-6. PubMed ID: 20830412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.
    Spinicelli P; Mahler B; Buil S; Quélin X; Dubertret B; Hermier JP
    Chemphyschem; 2009 Apr; 10(6):879-82. PubMed ID: 19294684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces.
    Tsui EY; Hartstein KH; Gamelin DR
    J Am Chem Soc; 2016 Sep; 138(35):11105-8. PubMed ID: 27518320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW; Chen J; Song JL; Zhao DW; Deng WQ; Lei W
    Opt Express; 2010 Jan; 18(2):1296-301. PubMed ID: 20173955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.
    Li C; Yang L; Xiao J; Wu YC; Søndergaard M; Luo Y; Li D; Meng Q; Iversen BB
    Phys Chem Chem Phys; 2013 Jun; 15(22):8710-5. PubMed ID: 23639947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.
    Querner C; Reiss P; Sadki S; Zagorska M; Pron A
    Phys Chem Chem Phys; 2005 Sep; 7(17):3204-9. PubMed ID: 16240033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface.
    García-Santamaría F; Brovelli S; Viswanatha R; Hollingsworth JA; Htoon H; Crooker SA; Klimov VI
    Nano Lett; 2011 Feb; 11(2):687-93. PubMed ID: 21207930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation.
    Spann BT; Chen L; Ruan X; Xu X
    Opt Express; 2013 Jan; 21 Suppl 1():A15-22. PubMed ID: 23389266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays.
    Lee JS; Kovalenko MV; Huang J; Chung DS; Talapin DV
    Nat Nanotechnol; 2011 Apr; 6(6):348-52. PubMed ID: 21516091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between amplified spontaneous emission, Forster resonant energy transfer, and self-absorption in hybrid poly(9,9-dioctylfluorene)-CdSe/ZnS nanocrystal thin films.
    Anni M; Alemanno E; Cretí A; Ingrosso C; Panniello A; Striccoli M; Curri ML; Lomascolo M
    J Phys Chem A; 2010 Feb; 114(5):2086-90. PubMed ID: 20085251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes.
    Engtrakul C; Kim YH; Nedeljković JM; Ahrenkiel SP; Gilbert KE; Alleman JL; Zhang SB; Mićić OI; Nozik AJ; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25153-7. PubMed ID: 17165958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.