These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26978505)

  • 61. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport.
    Fog JU; Khoshbouei H; Holy M; Owens WA; Vaegter CB; Sen N; Nikandrova Y; Bowton E; McMahon DG; Colbran RJ; Daws LC; Sitte HH; Javitch JA; Galli A; Gether U
    Neuron; 2006 Aug; 51(4):417-29. PubMed ID: 16908408
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae.
    Stednitz SJ; Freshner B; Shelton S; Shen T; Black D; Gahtan E
    Neurotoxicol Teratol; 2015; 52(Pt A):51-6. PubMed ID: 26546233
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.
    Pan X; Guo X; Xiong F; Cheng G; Lu Q; Yan H
    Toxicol Lett; 2015 Jul; 236(1):60-8. PubMed ID: 25943760
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Striatal susceptibility to a dopaminergic neurotoxin is independent of sex hormone effects on cell survival and DAT expression but is exacerbated by central aromatase inhibition.
    McArthur S; Murray HE; Dhankot A; Dexter DT; Gillies GE
    J Neurochem; 2007 Feb; 100(3):678-92. PubMed ID: 17116232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generation of Induced Dopaminergic Neurons from Human Fetal Fibroblasts.
    Legault EM; Drouin-Ouellet J
    Methods Mol Biol; 2021; 2352():97-115. PubMed ID: 34324182
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Peruvian family with a novel PARK2 mutation: Clinical and pathological characteristics.
    Cornejo-Olivas MR; Torres L; Mata IF; Mazzetti P; Rivas D; Cosentino C; Inca-Martinez M; Cuba JM; Zabetian CP; Leverenz JB
    Parkinsonism Relat Disord; 2015 May; 21(5):444-8. PubMed ID: 25817512
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson's disease.
    Watanabe Y; Himeda T; Araki T
    Med Sci Monit; 2005 Jan; 11(1):RA17-23. PubMed ID: 15614202
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons.
    Porritt MJ; Batchelor PE; Howells DW
    Exp Neurol; 2005 Mar; 192(1):226-34. PubMed ID: 15698637
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations.
    Kramer DJ; Aisenberg EE; Kosillo P; Friedmann D; Stafford DA; Lee AY; Luo L; Hockemeyer D; Ngai J; Bateup HS
    Cell Rep; 2021 May; 35(6):109123. PubMed ID: 33979604
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques.
    Hayashi T; Wakao S; Kitada M; Ose T; Watabe H; Kuroda Y; Mitsunaga K; Matsuse D; Shigemoto T; Ito A; Ikeda H; Fukuyama H; Onoe H; Tabata Y; Dezawa M
    J Clin Invest; 2013 Jan; 123(1):272-84. PubMed ID: 23202734
    [TBL] [Abstract][Full Text] [Related]  

  • 71. APP+, a fluorescent analogue of the neurotoxin MPP+, is a marker of catecholamine neurons in brain tissue, but not a fluorescent false neurotransmitter.
    Karpowicz RJ; Dunn M; Sulzer D; Sames D
    ACS Chem Neurosci; 2013 May; 4(5):858-69. PubMed ID: 23647019
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolomics-based identification of metabolic alterations in PARK2.
    Okuzumi A; Hatano T; Ueno SI; Ogawa T; Saiki S; Mori A; Koinuma T; Oji Y; Ishikawa KI; Fujimaki M; Sato S; Ramamoorthy S; Mohney RP; Hattori N
    Ann Clin Transl Neurol; 2019 Mar; 6(3):525-536. PubMed ID: 30911576
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulated rapid round trips: Endocytotic cycling of the dopamine transporter shapes motor learning.
    Freissmuth M
    J Biol Chem; 2023 Apr; 299(4):104618. PubMed ID: 36935007
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reducing
    Ekholm-Reed S; Baker R; Campos AR; Stouffer D; Henze M; Wolf DA; Loring JF; Thomas EA; Reed SI
    Commun Biol; 2019; 2():125. PubMed ID: 30963113
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prolonged Differentiation of Neuron-Astrocyte Co-Cultures Results in Emergence of Dopaminergic Neurons.
    de Leeuw VC; van Oostrom CTM; Zwart EP; Heusinkveld HJ; Hessel EVS
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835019
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia.
    Kurian MA; Zhen J; Cheng SY; Li Y; Mordekar SR; Jardine P; Morgan NV; Meyer E; Tee L; Pasha S; Wassmer E; Heales SJ; Gissen P; Reith ME; Maher ER
    J Clin Invest; 2009 Jun; 119(6):1595-603. PubMed ID: 19478460
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT.
    Harraz MM
    Front Neurosci; 2023; 17():1219441. PubMed ID: 37694119
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A new mouse tool for studying dopaminergic neurons.
    Kok MA; Fu Y
    J Neurosci Methods; 2021 Jan; 347():108968. PubMed ID: 33039413
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phenotypic Discordance in Siblings with Identical Compound Heterozygous PARK2 Mutations.
    Isaacs D; Claassen D; Bowman AB; Hedera P
    Brain Sci; 2017 Jun; 7(7):. PubMed ID: 28672806
    [No Abstract]   [Full Text] [Related]  

  • 80. Turning skin into dopamine neurons.
    Parmar M; Jakobsson J
    Cell Res; 2011 Oct; 21(10):1386-7. PubMed ID: 21826107
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.