BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26978787)

  • 1. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.
    Xiao F; Yue L; Li S; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jun; 162():69-74. PubMed ID: 26978787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid-induced all-α to α + β conformational transition in cytochrome c with improved peroxidase activity in aqueous medium.
    Bharmoria P; Trivedi TJ; Pabbathi A; Samanta A; Kumar A
    Phys Chem Chem Phys; 2015 Apr; 17(15):10189-99. PubMed ID: 25798458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H
    Yin V; Shaw GS; Konermann L
    J Am Chem Soc; 2017 Nov; 139(44):15701-15709. PubMed ID: 29048162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.
    Jafari Azad V; Kasravi S; Alizadeh Zeinabad H; Memar Bashi Aval M; Saboury AA; Rahimi A; Falahati M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2565-2577. PubMed ID: 27632558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibility of structural transition of cytochrome c on interacting with and releasing from alternating copolymers of maleic Acid and alkene.
    Liang L; Yao P; Jiang M
    Biomacromolecules; 2006 Jun; 7(6):1829-35. PubMed ID: 16768404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol.
    Hirota S; Ueda M; Hayashi Y; Nagao S; Kamikubo H; Kataoka M
    J Biochem; 2012 Dec; 152(6):521-9. PubMed ID: 22923742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion-Specific Effects on the Alkaline State of Cytochrome c.
    Sedlák E; Žár T; Varhač R; Musatov A; Tomášková N
    Biochemistry (Mosc); 2021 Jan; 86(1):59-73. PubMed ID: 33705282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation.
    Shimojo K; Kamiya N; Tani F; Naganawa H; Naruta Y; Goto M
    Anal Chem; 2006 Nov; 78(22):7735-42. PubMed ID: 17105166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions.
    Tomášková N; Varinská L; Sedlák E
    Gen Physiol Biophys; 2010 Sep; 29(3):255-65. PubMed ID: 20817949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Peroxidase Activity of Cytochrome
    Wu L; Jiang X
    Langmuir; 2020 Feb; 36(5):1094-1102. PubMed ID: 31951423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain swapping of the heme and N-terminal α-helix in Hydrogenobacter thermophilus cytochrome c(552) dimer.
    Hayashi Y; Nagao S; Osuka H; Komori H; Higuchi Y; Hirota S
    Biochemistry; 2012 Oct; 51(43):8608-16. PubMed ID: 23035813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converting cytochrome C into a peroxidase-like metalloenzyme by molecular design.
    Wang ZH; Lin YW; Rosell FI; Ni FY; Lu HJ; Yang PY; Tan XS; Li XY; Huang ZX; Mauk AG
    Chembiochem; 2007 Apr; 8(6):607-9. PubMed ID: 17328023
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation.
    Mohammadyani D; Yanamala N; Samhan-Arias AK; Kapralov AA; Stepanov G; Nuar N; Planas-Iglesias J; Sanghera N; Kagan VE; Klein-Seetharaman J
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1057-1068. PubMed ID: 29317202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant expression, biophysical characterization, and cardiolipin-induced changes of two Caenorhabditis elegans cytochrome c proteins.
    Vincelli AJ; Pottinger DS; Zhong F; Hanske J; Rolland SG; Conradt B; Pletneva EV
    Biochemistry; 2013 Jan; 52(4):653-66. PubMed ID: 23282202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic insights into the Photoreduction of Cytochrome c with UVA-Vis Light Irradiation.
    Cao HY; Liu YW; Tang Q; Zhao JM; Guo XJ; Zheng XF
    Protein Pept Lett; 2015; 22(9):853-9. PubMed ID: 26149397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.