These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26978896)

  • 1. [Research on Real-Time Trace Gas Detection System Based on QEPAS].
    Ma YF; Yu G; Zhang JB; Luo H; Yu X; Yang CB; Yang Z; Sun R; Chen DY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3003-6. PubMed ID: 26978896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.
    Ma Y; Tong Y; He Y; Yu X; Tittel FK
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.
    Ma Y; Lewicki R; Razeghi M; Tittel FK
    Opt Express; 2013 Jan; 21(1):1008-19. PubMed ID: 23388995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO
    Liu Y; Lin H; Montano BAZ; Zhu W; Zhong Y; Kan R; Yuan B; Yu J; Shao M; Zheng H
    Photoacoustics; 2022 Mar; 25():100332. PubMed ID: 35242537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor.
    Patimisco P; Borri S; Galli I; Mazzotti D; Giusfredi G; Akikusa N; Yamanishi M; Scamarcio G; De Natale P; Spagnolo V
    Analyst; 2015 Feb; 140(3):736-43. PubMed ID: 25465410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser.
    Chen Y; Liang T; Qiao S; Ma Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz enhanced photoacoustic spectroscopy with a 3.38 μm antimonide distributed feedback laser.
    Jahjah M; Belahsene S; Nähle L; Fischer M; Koeth J; Rouillard Y; Vicet A
    Opt Lett; 2012 Jul; 37(13):2502-4. PubMed ID: 22743435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.
    Wojtas J; Gluszek A; Hudzikowski A; Tittel FK
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection.
    Ma Y; Tong Y; He Y; Jin X; Tittel FK
    Opt Express; 2019 Mar; 27(6):9302-9312. PubMed ID: 31052737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [High-Sensitive Carbon Dioxide Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a 2.0 μm Distributed Feedback Laser].
    Liu XL; Wu HP; Shao J; Dong L; Zhang L; Ma WG; Yin WB; Jia ST
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2078-82. PubMed ID: 26672270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace Gas Detection System Based on All-Optical Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin C; Liao Y; Fang F
    Appl Spectrosc; 2019 Nov; 73(11):1327-1333. PubMed ID: 31373509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin H; Huang Z; Kan R; Zheng H; Liu Y; Liu B; Dong L; Zhu W; Tang J; Yu J; Chen Z; Tittel FK
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ppbv-Level Ethane Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a Continuous-Wave, Room Temperature Interband Cascade Laser.
    Li C; Dong L; Zheng C; Lin J; Wang Y; Tittel FK
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring.
    Wu H; Dong L; Zheng H; Yu Y; Ma W; Zhang L; Yin W; Xiao L; Jia S; Tittel FK
    Nat Commun; 2017 May; 8():15331. PubMed ID: 28561065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quartz-enhanced photoacoustic spectroscopy (QEPAS) and Beat Frequency-QEPAS techniques for air pollutants detection: A comparison in terms of sensitivity and acquisition time.
    Li B; Menduni G; Giglio M; Patimisco P; Sampaolo A; Zifarelli A; Wu H; Wei T; Spagnolo V; Dong L
    Photoacoustics; 2023 Jun; 31():100479. PubMed ID: 37255964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork.
    Liang T; Qiao S; Chen Y; He Y; Ma Y
    Photoacoustics; 2024 Apr; 36():100592. PubMed ID: 38322619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Small-Gap Quartz Tuning Fork.
    Ma YF; Tong Y; He Y; Long JH; Yu X
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH₃ and H₂S.
    Wu H; Dong L; Liu X; Zheng H; Yin X; Ma W; Zhang L; Yin W; Jia S
    Sensors (Basel); 2015 Oct; 15(10):26743-55. PubMed ID: 26506351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.
    Ma Y; Yu G; Zhang J; Yu X; Sun R; Tittel FK
    Sensors (Basel); 2015 Mar; 15(4):7596-604. PubMed ID: 25825977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Monitoring of oxygen concentration based on tunable diode laser absorption spectroscopy].
    Zhang S; Dong FZ; Zhang ZR; Wang Y; Kan RF; Zhang YJ; Liu JG; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2593-6. PubMed ID: 20038015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.