These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26978924)
41. Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Rastmanesh F; Moore F; Keshavarzi B Bull Environ Contam Toxicol; 2010 Nov; 85(5):515-9. PubMed ID: 21069278 [TBL] [Abstract][Full Text] [Related]
42. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
43. [Estimation of the TN and SOM contents in soil from GAN NAN navel orange plant area by NIR diffuse spectroscopy]. Liu YD; Xiong SS; Chen DB Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2679-82. PubMed ID: 24409716 [TBL] [Abstract][Full Text] [Related]
44. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767 [TBL] [Abstract][Full Text] [Related]
45. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
46. [Study on the spectrum response of Brassica Campestris L leaf to the zinc pollution]. Chen SN; Liu XH; Hou J; Liu SH; Chi GY; Cui BS; Yang ZF Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1797-801. PubMed ID: 18051532 [TBL] [Abstract][Full Text] [Related]
47. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Cheraghi M; Lorestani B; Merrikhpour H Biol Trace Elem Res; 2012 Jan; 145(1):87-92. PubMed ID: 21826610 [TBL] [Abstract][Full Text] [Related]
48. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291 [TBL] [Abstract][Full Text] [Related]
49. Analysis of Cadmium Contamination in Lettuce ( Zhou L; Zhou L; Wu H; Kong L; Li J; Qiao J; Chen L Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067934 [TBL] [Abstract][Full Text] [Related]
50. [Determination of soluble solids content in navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method]. Sun T; Xu WL; Lin JL; Liu MH; He XW Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3229-33. PubMed ID: 23427541 [TBL] [Abstract][Full Text] [Related]
51. [Estimation and mapping of soil organic matter based on Vis-NIR reflectance spectroscopy]. Guo Y; Ji WJ; Wu HH; Shi Z Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1135-40. PubMed ID: 23841444 [TBL] [Abstract][Full Text] [Related]
52. Developing a New Spectral Index for Detecting Cadmium-Induced Stress in Rice on a Regional Scale. Wu C; Liu M; Liu X; Wang T; Wang L Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795501 [TBL] [Abstract][Full Text] [Related]
53. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils. Peng KJ; Luo CL; Chen YH; Wang GP; Li XD; Shen ZG Bull Environ Contam Toxicol; 2009 Aug; 83(2):260-4. PubMed ID: 19290449 [TBL] [Abstract][Full Text] [Related]
54. [Fast determination of heavy metal Cu in Ludwigia prostrata leaves using near infrared diffuse spectroscopy]. Liu YD; Shi Y; Cai LJ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3220-4. PubMed ID: 23427539 [TBL] [Abstract][Full Text] [Related]
55. Rapid analysis of soluble solid content in navel orange based on visible-near infrared spectroscopy combined with a swarm intelligence optimization method. Song J; Li G; Yang X; Liu X; Xie L Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117815. PubMed ID: 31776095 [TBL] [Abstract][Full Text] [Related]
56. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy. Liu F; Zhang F; Jin Z; He Y; Fang H; Ye Q; Zhou W Anal Chim Acta; 2008 Nov; 629(1-2):56-65. PubMed ID: 18940321 [TBL] [Abstract][Full Text] [Related]
57. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Hobbelen PH; Koolhaas JE; van Gestel CA Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310 [TBL] [Abstract][Full Text] [Related]
58. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Kumar Sharma R; Agrawal M; Marshall F Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660 [TBL] [Abstract][Full Text] [Related]
59. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Varun M; D'Souza R; Pratas J; Paul MS Bull Environ Contam Toxicol; 2011 Jul; 87(1):45-9. PubMed ID: 21556781 [TBL] [Abstract][Full Text] [Related]
60. Predicting cadmium fractions in agricultural soils using proximal sensing techniques. Shrestha G; Calvelo-Pereira R; Poggio M; Jeyakumar P; Roudier P; Kereszturi G; Anderson CWN Environ Pollut; 2024 May; 349():123889. PubMed ID: 38574949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]