These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26978926)
1. [Sensing of Cu²⁺ Based on Fenton Reaction and Unmodified Gold Nanoparticles]. Xing YP; Liu C; Zhou XH; Zhang LP; Shi HC Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3151-4. PubMed ID: 26978926 [TBL] [Abstract][Full Text] [Related]
2. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Sang Y; Zhang L; Li YF; Chen LQ; Xu JL; Huang CZ Anal Chim Acta; 2010 Feb; 659(1-2):224-8. PubMed ID: 20103128 [TBL] [Abstract][Full Text] [Related]
3. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Hormozi-Nezhad MR; Abbasi-Moayed S Talanta; 2014 Nov; 129():227-32. PubMed ID: 25127588 [TBL] [Abstract][Full Text] [Related]
4. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles. Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325 [TBL] [Abstract][Full Text] [Related]
5. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583 [TBL] [Abstract][Full Text] [Related]
6. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Wang Y; Yang F; Yang X Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604 [TBL] [Abstract][Full Text] [Related]
7. Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles. Liu R; Chen Z; Wang S; Qu C; Chen L; Wang Z Talanta; 2013 Aug; 112():37-42. PubMed ID: 23708534 [TBL] [Abstract][Full Text] [Related]
8. Label-free colorimetric sensing of ascorbic acid based on Fenton reaction with unmodified gold nanoparticle probes and multiple molecular logic gates. Zhang LP; Hu B; Wang JH Anal Chim Acta; 2012 Mar; 717():127-33. PubMed ID: 22304824 [TBL] [Abstract][Full Text] [Related]
9. A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Miao X; Ling L; Cheng D; Shuai X Analyst; 2012 Jul; 137(13):3064-9. PubMed ID: 22645734 [TBL] [Abstract][Full Text] [Related]
10. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Chen Z; Luo S; Liu C; Cai Q Anal Bioanal Chem; 2009 Sep; 395(2):489-94. PubMed ID: 19641904 [TBL] [Abstract][Full Text] [Related]
11. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558 [TBL] [Abstract][Full Text] [Related]
12. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Li B; Du Y; Dong S Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566 [TBL] [Abstract][Full Text] [Related]
13. Label-free colorimetric assay for arsenic(III) determination based on a truncated short ssDNA and gold nanoparticles. Zhang D; Liu Y; Ding J; Hayat K; Zhan X; Zhou P; Zhang D Mikrochim Acta; 2021 Jan; 188(2):38. PubMed ID: 33432381 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine. Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z Analyst; 2011 Sep; 136(18):3725-30. PubMed ID: 21804959 [TBL] [Abstract][Full Text] [Related]
15. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. Wang C; Chen D; Wang Q; Wang Q Anal Sci; 2016; 32(7):757-62. PubMed ID: 27396657 [TBL] [Abstract][Full Text] [Related]
16. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. Li X; Cheng R; Shi H; Tang B; Xiao H; Zhao G J Hazard Mater; 2016 Mar; 304():474-80. PubMed ID: 26619046 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Guo Y; Wang Z; Qu W; Shao H; Jiang X Biosens Bioelectron; 2011 Jun; 26(10):4064-9. PubMed ID: 21543219 [TBL] [Abstract][Full Text] [Related]
18. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Tan YN; Lee KH; Su X Anal Chem; 2011 Jun; 83(11):4251-7. PubMed ID: 21524056 [TBL] [Abstract][Full Text] [Related]
19. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles. Liu ZD; Zhu HY; Zhao HX; Huang CZ Talanta; 2013 Mar; 106():255-60. PubMed ID: 23598125 [TBL] [Abstract][Full Text] [Related]
20. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Chen GH; Chen WY; Yen YC; Wang CW; Chang HT; Chen CF Anal Chem; 2014 Jul; 86(14):6843-9. PubMed ID: 24932699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]