BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26979048)

  • 1. Decalcification using ethylenediaminetetraacetic acid for clear microstructure imaging of cochlea through optical coherence tomography.
    Lee J; Kim K; Wijesinghe RE; Jeon D; Lee SH; Jeon M; Jang JH
    J Biomed Opt; 2016 Aug; 21(8):081204. PubMed ID: 26979048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct.
    Cho NH; Lee JW; Cho JH; Kim J; Jang JH; Jung W
    J Biomed Opt; 2015 Mar; 20(3):036009. PubMed ID: 25764313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution Imaging of the Human Cochlea through the Round Window by means of Optical Coherence Tomography.
    Starovoyt A; Putzeys T; Wouters J; Verhaert N
    Sci Rep; 2019 Oct; 9(1):14271. PubMed ID: 31582808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA preservation in decalcified cochlear samples.
    Waissbluth S; Chan SW; Chen JZ; McIntosh M; Daniel SJ
    Otol Neurotol; 2013 Feb; 34(2):331-7. PubMed ID: 23250382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D reconstruction of cochlea using optical coherence tomography.
    Karvonen T; Uranishi Y; Sakamoto T; Tona Y; Okamoto K; Tamura H; Kuroda T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5905-5908. PubMed ID: 28269598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 microm and 1.3 microm.
    Wong BJ; Zhao Y; Yamaguchi M; Nassif N; Chen Z; De Boer JF
    Otolaryngol Head Neck Surg; 2004 Mar; 130(3):334-8. PubMed ID: 15054375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography.
    Subhash HM; Davila V; Sun H; Nguyen-Huynh AT; Nuttall AL; Wang RK
    J Biomed Opt; 2010; 15(3):036024. PubMed ID: 20615026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time intracochlear imaging of automated cochlear implant insertions in whole decalcified cadaver cochleas using ultrasound.
    Landry TG; Earle G; Brown JA; Bance ML
    Cochlear Implants Int; 2018 Sep; 19(5):255-267. PubMed ID: 29658405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window.
    Kim W; Kim S; Oghalai JS; Applegate BE
    Opt Lett; 2018 May; 43(9):1966-1969. PubMed ID: 29714773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography.
    Liang Y; Yuan W; Mavadia-Shukla J; Li X
    J Biomed Opt; 2016 Aug; 21(8):081211. PubMed ID: 27335154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography.
    Mohebbi S; Mirsalehi M; Kahrs LA; Ortmaier T; Lenarz T; Majdani O
    Iran J Otorhinolaryngol; 2017 Jan; 29(90):5-9. PubMed ID: 28229056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo imaging of mouse cochlea by optical coherence tomography.
    Tona Y; Sakamoto T; Nakagawa T; Adachi T; Taniguchi M; Torii H; Hamaguchi K; Kitajiri S; Ito J
    Otol Neurotol; 2014 Feb; 35(2):e84-9. PubMed ID: 24448302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between optical coherence tomography images and histology of pigskin.
    Kuranov R; Sapozhnikova V; Prough D; Cicenaite I; Esenaliev R
    Appl Opt; 2007 Apr; 46(10):1782-6. PubMed ID: 17356622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral ganglion neuron quantification in the guinea pig cochlea using Confocal Laser Scanning Microscopy compared to embedding methods.
    Wrzeszcz A; Reuter G; Nolte I; Lenarz T; Scheper V
    Hear Res; 2013 Dec; 306():145-55. PubMed ID: 23968822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography.
    Yu H; Lee P; Jo Y; Lee K; Tuchin VV; Jeong Y; Park Y
    J Biomed Opt; 2016 Dec; 21(12):121510. PubMed ID: 27792807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo deep tissue imaging using wavefront shaping optical coherence tomography.
    Yu H; Lee P; Lee K; Jang J; Lim J; Jang W; Jeong Y; Park Y
    J Biomed Opt; 2016 Oct; 21(10):101406. PubMed ID: 26895566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages of a combined method of decalcification compared to EDTA.
    Castania VA; Silveira JW; Issy AC; Pitol DL; Castania ML; Neto AD; Bel EA; Defino HL
    Microsc Res Tech; 2015 Feb; 78(2):111-8. PubMed ID: 25452153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography of the cochlea in the porcine model.
    Sepehr A; Djalilian HR; Chang JE; Chen Z; Wong BJ
    Laryngoscope; 2008 Aug; 118(8):1449-51. PubMed ID: 18496151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-optical coherence tomography of the mammalian cochlea.
    Iyer JS; Batts SA; Chu KK; Sahin MI; Leung HM; Tearney GJ; Stankovic KM
    Sci Rep; 2016 Sep; 6():33288. PubMed ID: 27633610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography.
    Ramamoorthy S; Zhang Y; Petrie T; Fridberger A; Ren T; Wang R; Jacques SL; Nuttall AL
    J Biomed Opt; 2016 Feb; 21(2):25003. PubMed ID: 26836207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.