These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 26979272)
21. Kinematic comparison of myoelectric and body powered prostheses while performing common activities. Carey SL; Dubey RV; Bauer GS; Highsmith MJ Prosthet Orthot Int; 2009 Jun; 33(2):179-86. PubMed ID: 19367522 [TBL] [Abstract][Full Text] [Related]
22. Comparison of inter-joint coordination strategies during activities of daily living with prosthetic and anatomical limbs. Lee C; Gates DH Hum Mov Sci; 2024 Aug; 96():103228. PubMed ID: 38761512 [TBL] [Abstract][Full Text] [Related]
23. Compensatory strategies of body-powered prosthesis users reveal primary reliance on trunk motion and relation to skill level. Valevicius AM; Boser QA; Chapman CS; Pilarski PM; Vette AH; Hebert JS Clin Biomech (Bristol); 2020 Feb; 72():122-129. PubMed ID: 31862606 [TBL] [Abstract][Full Text] [Related]
24. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses? Montagnani F; Controzzi M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462 [TBL] [Abstract][Full Text] [Related]
25. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497 [TBL] [Abstract][Full Text] [Related]
26. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study. Kryger M; Schultz AE; Kuiken T Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053 [TBL] [Abstract][Full Text] [Related]
27. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. Markovic M; Dosen S; Popovic D; Graimann B; Farina D J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274 [TBL] [Abstract][Full Text] [Related]
28. Consumer concerns and the functional value of prostheses to upper limb amputees. Kejlaa GH Prosthet Orthot Int; 1993 Dec; 17(3):157-63. PubMed ID: 8134275 [TBL] [Abstract][Full Text] [Related]
29. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Crouch DL; Huang H J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972 [TBL] [Abstract][Full Text] [Related]
30. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis. Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876 [TBL] [Abstract][Full Text] [Related]
32. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks. Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214 [TBL] [Abstract][Full Text] [Related]
33. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks. Murgia A; Kyberd PJ; Chappell PH; Light CM Clin Biomech (Bristol); 2004 Mar; 19(3):248-54. PubMed ID: 15003339 [TBL] [Abstract][Full Text] [Related]
34. Motor performance benefits of matched limb imitation in prosthesis users. Cusack WF; Patterson R; Thach S; Kistenberg RS; Wheaton LA Exp Brain Res; 2014 Jul; 232(7):2143-54. PubMed ID: 24643547 [TBL] [Abstract][Full Text] [Related]
35. Obstacle course: users' maneuverability and movement efficiency when using Otto Bock C-Leg, Otto Bock 3R60, and CaTech SNS prosthetic knee joints. Meier MR; Hansen AH; Gard SA; McFadyen AK J Rehabil Res Dev; 2012; 49(4):583-96. PubMed ID: 22773261 [TBL] [Abstract][Full Text] [Related]
36. Coupling between wrist flexion-extension and radial-ulnar deviation. Li ZM; Kuxhaus L; Fisk JA; Christophel TH Clin Biomech (Bristol); 2005 Feb; 20(2):177-83. PubMed ID: 15621323 [TBL] [Abstract][Full Text] [Related]
37. Design of a modular and compliant wrist module for upper limb prosthetics. Demofonti A; Carpino G; Tagliamonte NL; Baldini G; Bramato L; Zollo L Anat Rec (Hoboken); 2023 Apr; 306(4):764-776. PubMed ID: 35362663 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of Compensatory Movement by Shoulder Joint Torque during Gain Adjustment of a Powered Prosthetic Wrist Joint. Kato A; Nagumo H; Tamon M; Fujie MG; Sugano S Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1891-1894. PubMed ID: 30440766 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of prosthetic usage in upper limb amputees. Dudkiewicz I; Gabrielov R; Seiv-Ner I; Zelig G; Heim M Disabil Rehabil; 2004 Jan; 26(1):60-3. PubMed ID: 14660200 [TBL] [Abstract][Full Text] [Related]
40. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study. Montagnani F; Controzzi M; Cipriani C Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2462-5. PubMed ID: 26736792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]