BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 26979664)

  • 1. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion.
    Wang Y; Liu X; Han W; Jiao J; Ren W; Jia G; Huang C; Yang Q
    Bioresour Technol; 2024 May; 400():130649. PubMed ID: 38570098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of total solids content on anaerobic digestion of waste activated sludge enhanced by high-temperature thermal hydrolysis.
    Li Z; You Z; Zhang L; Chen H
    J Environ Manage; 2024 May; 359():120980. PubMed ID: 38669887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel strategy for integration of oxidation within advanced thermal hydrolysis of sludge.
    Ngo PL; Young BR; Baroutian S
    Chemosphere; 2024 Jan; 348():140676. PubMed ID: 37956932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal hydrolysis of sewage sludge: Improvement in biogas generation and prediction of global warming potential.
    Singh DK; Garg A
    Waste Manag Res; 2024 Jan; 42(1):51-58. PubMed ID: 37211809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal deployment of thermal hydrolysis and anaerobic digestion to maximize net energy output based on sewage sludge characteristics.
    Chen P; Zheng Y; Wang E; Ran X; Huang G; Li W; Dong R; Guo J
    Water Res; 2023 Dec; 247():120767. PubMed ID: 37897995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chitosan and rice husk powder on thermal hydrolysis-anaerobic digested sludge conditioning: Dewaterability and biogas slurry fertility.
    Zhang Q; Shi H; Zhao Y; Pu J; Peng C; Wu R; Zhang Y; Xu Z; Wang T
    Chemosphere; 2024 Mar; 351():141267. PubMed ID: 38246498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reaction conditions on the wet oxidation of excess sludge from the caprolactam wastewater treatment process.
    Shulin Q; Zhongquan W; Weicheng Z; Yingxi Z; Xu Z
    Water Sci Technol; 2023 Nov; 88(10):2491-2498. PubMed ID: 38017673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domestic wastewater sludge valorization: Multi-criteria evaluation of anaerobic digestion vs. hydrothermal liquefaction.
    Abeyratne WMLK; Zhang Y; Brewer CE; Nirmalakhandan N
    Bioresour Technol; 2024 May; 400():130655. PubMed ID: 38580168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of food waste hydrolysate as an external carbon source on defoaming in wastewater treatment with activated sludge process.
    Zhou B; Wang D; Zhao G; Zhang M; Liu X; Zhang D; Liang J; Zhou L
    Bioresour Technol; 2024 Jul; 404():130900. PubMed ID: 38801956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the process of decreasing the filtration resistance of sewage sludge by thermal pretreatment: a case study for the Lviv WWTP.
    Verbovskyi O; Zhuk V; Orel V; Popadiuk I
    Water Sci Technol; 2023 Oct; 88(7):1688-1698. PubMed ID: 37830991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of zinc oxide nanoparticles on anaerobic digestion of waste activated sludge and microbial communities.
    Wang S; Chen L; Yang H; Liu Z
    RSC Adv; 2021 Jan; 11(10):5580-5589. PubMed ID: 35423104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Energy Flexibility Management at Wastewater Treatment Facilities.
    Bolorinos J; Mauter MS; Rajagopal R
    Environ Sci Technol; 2023 Nov; 57(46):18362-18371. PubMed ID: 37327453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid preparation and recovery from refractory sludge by the oxidative acid hydrolysis process.
    Hui W; Zhou J; Jin R
    Environ Technol; 2024 Apr; 45(10):1989-1999. PubMed ID: 36519308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restructuring anaerobic hydrolysis kinetics in plant-wide models for accurate prediction of biogas production.
    Ozyildiz G; Zengin GE; Güven D; Cokgor E; Özdemir Ö; Hauduc H; Takács I; Insel G
    Water Res; 2023 Oct; 245():120620. PubMed ID: 37717326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disintegration impact on sludge digestion process.
    Dauknys R; Rimeika M; Jankeliūnaitė E; Mažeikienė A
    Environ Technol; 2016 Nov; 37(21):2768-72. PubMed ID: 26979664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic disintegration of waste activated sludge: improvement of the anaerobic digestion and hygienization of sludge.
    Grübel K; Wacławek S; Machnicka A; Nowicka E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(12):1067-1074. PubMed ID: 30421665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of municipal sludge and grease co-digestion using disintegration technologies.
    Bouchy L; Pérez A; Camacho P; Rubio P; Silvestre G; Fernández B; Cano R; Polanco M; Díaz N
    Water Sci Technol; 2012; 65(2):214-20. PubMed ID: 22233897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume.
    Abe N; Tang YQ; Iwamura M; Morimura S; Kida K
    Water Sci Technol; 2013; 67(11):2527-33. PubMed ID: 23752385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.