BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26979705)

  • 1. Coarse-grained molecular simulations of allosteric cooperativity.
    Nandigrami P; Portman JJ
    J Chem Phys; 2016 Mar; 144(10):105101. PubMed ID: 26979705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations.
    Nandigrami P; Portman JJ
    J Chem Phys; 2016 Mar; 144(10):105102. PubMed ID: 26979706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data.
    González-Andrade M; Rodríguez-Sotres R; Madariaga-Mazón A; Rivera-Chávez J; Mata R; Sosa-Peinado A; Del Pozo-Yauner L; Arias-Olguín II
    J Biomol Struct Dyn; 2016; 34(1):78-91. PubMed ID: 25702612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin.
    Tripathi S; Portman JJ
    J Chem Phys; 2008 May; 128(20):205104. PubMed ID: 18513047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains.
    Li W; Wang W; Takada S
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10550-5. PubMed ID: 25002491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin.
    Yang C; Jas GS; Kuczera K
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):289-300. PubMed ID: 15023369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.
    Beccia MR; Sauge-Merle S; Lemaire D; Brémond N; Pardoux R; Blangy S; Guilbaud P; Berthomieu C
    J Biol Inorg Chem; 2015 Jul; 20(5):905-19. PubMed ID: 26070361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conformation-equilibrium model captures ligand-ligand interactions and ligand-biased signalling by G-protein coupled receptors.
    Roth S; Bruggeman FJ
    FEBS J; 2014 Oct; 281(20):4659-71. PubMed ID: 25145284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Ca2+-saturated calmodulin D129N mutant studied by multiple molecular dynamics simulations.
    Likić VA; Strehler EE; Gooley PR
    Protein Sci; 2003 Oct; 12(10):2215-29. PubMed ID: 14500879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion.
    Shimoyama H
    J Biomol Struct Dyn; 2019 Apr; 37(6):1567-1581. PubMed ID: 29633911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.
    Kukic P; Lundström P; Camilloni C; Evenäs J; Akke M; Vendruscolo M
    Biochemistry; 2016 Jan; 55(1):19-28. PubMed ID: 26618792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
    Gsponer J; Christodoulou J; Cavalli A; Bui JM; Richter B; Dobson CM; Vendruscolo M
    Structure; 2008 May; 16(5):736-46. PubMed ID: 18462678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible docking allowing induced fit in proteins: insights from an open to closed conformational isomers.
    Sandak B; Wolfson HJ; Nussinov R
    Proteins; 1998 Aug; 32(2):159-74. PubMed ID: 9714156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues.
    Strawn R; Melichercik M; Green M; Stockner T; Carey J; Ettrich R
    PLoS Comput Biol; 2010 Jun; 6(6):e1000801. PubMed ID: 20532206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength.
    Zhu MM; Rempel DL; Zhao J; Giblin DE; Gross ML
    Biochemistry; 2003 Dec; 42(51):15388-97. PubMed ID: 14690449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein grabs a ligand by extending anchor residues: molecular simulation for Ca2+ binding to calmodulin loop.
    Kobayashi C; Takada S
    Biophys J; 2006 May; 90(9):3043-51. PubMed ID: 16473902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.