These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 26979891)

  • 21. Validation of an accelerometer for measurement of activity in frail older people.
    Chigateri NG; Kerse N; Wheeler L; MacDonald B; Klenk J
    Gait Posture; 2018 Oct; 66():114-117. PubMed ID: 30172217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GaitKeeper: A System for Measuring Canine Gait.
    Ladha C; O'Sullivan J; Belshaw Z; Asher L
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparability between wearable inertial sensors and an electronic walkway for spatiotemporal and relative phase data in young children aged 6-11 years.
    Carroll K; Kennedy RA; Koutoulas V; Werake U; Bui M; Kraan CM
    Gait Posture; 2024 Jun; 111():30-36. PubMed ID: 38615566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slope estimation during normal walking using a shank-mounted inertial sensor.
    López AM; Álvarez D; González RC; Álvarez JC
    Sensors (Basel); 2012; 12(9):11910-21. PubMed ID: 23112689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can toe-ground footwear margin alter swing-foot ground clearance?
    Nagano H; Sparrow WA; Begg RK
    Gait Posture; 2015 Jul; 42(2):214-7. PubMed ID: 26073230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients.
    Rampp A; Barth J; Schülein S; Gaßmann KG; Klucken J; Eskofier BM
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1089-97. PubMed ID: 25389237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are there differences in the dual-task walking variability of minimum toe clearance in chronic low back pain patients and healthy controls?
    Hamacher D; Hamacher D; Herold F; Schega L
    Gait Posture; 2016 Sep; 49():97-101. PubMed ID: 27395449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shoe-Insole Technology for Injury Prevention in Walking.
    Nagano H; Begg RK
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of age on characteristics of forward and backward gait at preferred and accelerated walking speed.
    Laufer Y
    J Gerontol A Biol Sci Med Sci; 2005 May; 60(5):627-32. PubMed ID: 15972616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foot progression angle estimation using a single foot-worn inertial sensor.
    Wouda FJ; Jaspar SLJO; Harlaar J; van Beijnum BF; Veltink PH
    J Neuroeng Rehabil; 2021 Feb; 18(1):37. PubMed ID: 33596942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer.
    Kobsar D; Olson C; Paranjape R; Hadjistavropoulos T; Barden JM
    Gait Posture; 2014; 39(1):553-7. PubMed ID: 24139685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embedded sensor insole for wireless measurement of gait parameters.
    Martínez-Martí F; Martínez-García MS; García-Díaz SG; García-Jiménez J; Palma AJ; Carvajal MA
    Australas Phys Eng Sci Med; 2014 Mar; 37(1):25-35. PubMed ID: 24375153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls.
    García-Villamil G; Neira-Álvarez M; Huertas-Hoyas E; Ramón-Jiménez A; Rodríguez-Sánchez C
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.