BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26979909)

  • 1. Calibration of an instrumented treadmill using a precision-controlled device with artificial neural network-based error corrections.
    Hsieh HJ; Lin HC; Lu HL; Chen TY; Lu TW
    Gait Posture; 2016 Mar; 45():217-23. PubMed ID: 26979909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive protocol to test instrumented treadmills.
    Sloot LH; Houdijk H; Harlaar J
    Med Eng Phys; 2015 Jun; 37(6):610-6. PubMed ID: 25921721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic assessment of center of pressure measurements from an instrumented AMTI treadmill with controlled precision.
    Fortune E; Crenshaw J; Lugade V; Kaufman KR
    Med Eng Phys; 2017 Apr; 42():99-104. PubMed ID: 28161106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal calibration of instrumented treadmills using an instrumented pole.
    Sloot LH; Houdijk H; van der Krogt MM; Harlaar J
    Med Eng Phys; 2016 Aug; 38(8):785-92. PubMed ID: 27180211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new device for in situ static and dynamic calibration of force platforms.
    Hsieh HJ; Lu TW; Chen SC; Chang CM; Hung C
    Gait Posture; 2011 Apr; 33(4):701-5. PubMed ID: 21458995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ calibration and motion capture transformation optimization improve instrumented treadmill measurements.
    Goldberg SR; Kepple TM; Stanhope SJ
    J Appl Biomech; 2009 Nov; 25(4):401-6. PubMed ID: 20095462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial compensation for belt acceleration in an instrumented treadmill.
    Hnat SK; van den Bogert AJ
    J Biomech; 2014 Nov; 47(15):3758-61. PubMed ID: 25458202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Perturbed Postural Balance Test Using an Instrumented Treadmill - Precision and Accuracy of Belt Movement and Test-Retest Reliability of Balance Measures.
    Lesch KJ; Lavikainen J; Hyrylä V; Vartiainen P; Venojärvi M; Karjalainen PA; Tikkanen H; Stenroth L
    Front Sports Act Living; 2021; 3():688993. PubMed ID: 34514383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and testing of a high-speed treadmill to measure ground reaction forces at the limit of human gait.
    Bundle MW; Powell MO; Ryan LJ
    Med Eng Phys; 2015 Sep; 37(9):892-7. PubMed ID: 26143150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the centre of pressure during walking and running using an instrumented treadmill.
    Verkerke GJ; Hof AL; Zijlstra W; Ament W; Rakhorst G
    J Biomech; 2005 Sep; 38(9):1881-5. PubMed ID: 16023476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for calibrating force plates and force treadmills using an instrumented pole.
    Collins SH; Adamczyk PG; Ferris DP; Kuo AD
    Gait Posture; 2009 Jan; 29(1):59-64. PubMed ID: 18755590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A force measuring treadmill in clinical gait analysis.
    Dierick F; Penta M; Renaut D; Detrembleur C
    Gait Posture; 2004 Dec; 20(3):299-303. PubMed ID: 15531177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a new general-purpose device for calibrating instrumented spatial linkages.
    Nordquist JA; Hull ML
    J Biomech Eng; 2009 Mar; 131(3):034505. PubMed ID: 19154076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait analysis on split-belt force treadmills: validation of an instrument.
    Tesio L; Rota V
    Am J Phys Med Rehabil; 2008 Jul; 87(7):515-26. PubMed ID: 18388556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP).
    Choi HS; Lee CH; Shim M; Han JI; Baek YS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous kinetic-spectrophotometric determination of carbidopa, levodopa and methyldopa in the presence of citrate with the aid of multivariate calibration and artificial neural networks.
    Chamsaz M; Safavi A; Fadaee J
    Anal Chim Acta; 2007 Nov; 603(2):140-6. PubMed ID: 17963833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ground reaction forces of the canine hindlimb: are there differences between gait on treadmill and force plate?].
    Drüen S; Böddeker J; Nolte I; Wefstaedt P
    Berl Munch Tierarztl Wochenschr; 2010; 123(7-8):339-45. PubMed ID: 20690546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable system for in-situ re-calibration of force platforms: experimental validation.
    Cedraro A; Cappello A; Chiari L
    Gait Posture; 2009 Apr; 29(3):449-53. PubMed ID: 19111467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions.
    Paolini G; Della Croce U; Riley PO; Newton FK; Casey Kerrigan D
    Med Eng Phys; 2007 Apr; 29(3):404-11. PubMed ID: 16759895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.