BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 26979960)

  • 1. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle.
    Schulz S; Gietl A; Smollett K; Tinnefeld P; Werner F; Grohmann D
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1816-25. PubMed ID: 26979960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.
    Grohmann D; Nagy J; Chakraborty A; Klose D; Fielden D; Ebright RH; Michaelis J; Werner F
    Mol Cell; 2011 Jul; 43(2):263-74. PubMed ID: 21777815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif.
    Hirtreiter A; Damsma GE; Cheung AC; Klose D; Grohmann D; Vojnic E; Martin AC; Cramer P; Werner F
    Nucleic Acids Res; 2010 Jul; 38(12):4040-51. PubMed ID: 20197319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
    Martinez-Rucobo FW; Sainsbury S; Cheung AC; Cramer P
    EMBO J; 2011 Apr; 30(7):1302-10. PubMed ID: 21386817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination.
    Grohmann D; Werner F
    RNA Biol; 2010; 7(3):310-5. PubMed ID: 20473037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase.
    Smollett K; Blombach F; Reichelt R; Thomm M; Werner F
    Nat Microbiol; 2017 Mar; 2():17021. PubMed ID: 28248297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.
    Walker JE; Santangelo TJ
    Methods; 2015 Sep; 86():73-9. PubMed ID: 26028597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor E is a part of transcription elongation complexes.
    Grünberg S; Bartlett MS; Naji S; Thomm M
    J Biol Chem; 2007 Dec; 282(49):35482-90. PubMed ID: 17921145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation.
    Spitalny P; Thomm M
    J Biol Chem; 2003 Aug; 278(33):30497-505. PubMed ID: 12783891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Single-Molecule View of Archaeal Transcription.
    Kramm K; Endesfelder U; Grohmann D
    J Mol Biol; 2019 Sep; 431(20):4116-4131. PubMed ID: 31207238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of transcription initiation in Archaea.
    De Carlo S; Lin SC; Taatjes DJ; Hoenger A
    Transcription; 2010; 1(2):103-11. PubMed ID: 21326901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct modulation of RNA polymerase core functions by basal transcription factors.
    Werner F; Weinzierl RO
    Mol Cell Biol; 2005 Sep; 25(18):8344-55. PubMed ID: 16135821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
    Korkhin Y; Unligil UM; Littlefield O; Nelson PJ; Stuart DI; Sigler PB; Bell SD; Abrescia NG
    PLoS Biol; 2009 May; 7(5):e1000102. PubMed ID: 19419240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp.
    Duchi D; Mazumder A; Malinen AM; Ebright RH; Kapanidis AN
    Nucleic Acids Res; 2018 Aug; 46(14):7284-7295. PubMed ID: 29878276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-binding to archaeal RNA polymerase subunits F/E: a DEER and FRET study.
    Grohmann D; Klose D; Klare JP; Kay CW; Steinhoff HJ; Werner F
    J Am Chem Soc; 2010 May; 132(17):5954-5. PubMed ID: 20384325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro.
    Grohmann D; Hirtreiter A; Werner F
    Biochem J; 2009 Jul; 421(3):339-43. PubMed ID: 19492989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation.
    Pupov D; Miropolskaya N; Sevostyanova A; Bass I; Artsimovitch I; Kulbachinskiy A
    Nucleic Acids Res; 2010 Sep; 38(17):5784-96. PubMed ID: 20457751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.