These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26979960)

  • 41. Archaeal RNA polymerase arrests transcription at DNA lesions.
    Gehring AM; Santangelo TJ
    Transcription; 2017; 8(5):288-296. PubMed ID: 28598254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural basis of transcription arrest by coliphage HK022 Nun in an
    Kang JY; Olinares PD; Chen J; Campbell EA; Mustaev A; Chait BT; Gottesman ME; Darst SA
    Elife; 2017 Mar; 6():. PubMed ID: 28318486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial RNA polymerase.
    Darst SA
    Curr Opin Struct Biol; 2001 Apr; 11(2):155-62. PubMed ID: 11297923
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Chen J; Gopalkrishnan S; Chiu C; Chen AY; Campbell EA; Gourse RL; Ross W; Darst SA
    Elife; 2019 Dec; 8():. PubMed ID: 31841111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organization of an activator-bound RNA polymerase holoenzyme.
    Bose D; Pape T; Burrows PC; Rappas M; Wigneshweraraj SR; Buck M; Zhang X
    Mol Cell; 2008 Nov; 32(3):337-46. PubMed ID: 18995832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution.
    Koh HR; Roy R; Sorokina M; Tang GQ; Nandakumar D; Patel SS; Ha T
    Mol Cell; 2018 May; 70(4):695-706.e5. PubMed ID: 29775583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA.
    Wojtas MN; Mogni M; Millet O; Bell SD; Abrescia NG
    Nucleic Acids Res; 2012 Oct; 40(19):9941-52. PubMed ID: 22848102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of the lid element in transcription by E. coli RNA polymerase.
    Toulokhonov I; Landick R
    J Mol Biol; 2006 Aug; 361(4):644-58. PubMed ID: 16876197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-Time Single-Molecule Studies of RNA Polymerase-Promoter Open Complex Formation Reveal Substantial Heterogeneity Along the Promoter-Opening Pathway.
    Malinen AM; Bakermans J; Aalto-Setälä E; Blessing M; Bauer DLV; Parilova O; Belogurov GA; Dulin D; Kapanidis AN
    J Mol Biol; 2022 Jan; 434(2):167383. PubMed ID: 34863780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural evolution of multisubunit RNA polymerases.
    Werner F
    Trends Microbiol; 2008 Jun; 16(6):247-50. PubMed ID: 18468900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation.
    Schulz S; Kramm K; Werner F; Grohmann D
    Methods; 2015 Sep; 86():10-8. PubMed ID: 25912642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Promoter independent abortive transcription assays unravel functional interactions between TFIIB and RNA polymerase.
    Wiesler SC; Werner F; Weinzierl RO
    Methods Mol Biol; 2013; 977():217-27. PubMed ID: 23436365
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence-Detected Conformational Changes in Duplex DNA in Open Complex Formation by
    Sreenivasan R; Shkel IA; Chhabra M; Drennan A; Heitkamp S; Wang HC; Sridevi MA; Plaskon D; McNerney C; Callies K; Cimperman CK; Record MT
    Biochemistry; 2020 Apr; 59(16):1565-1581. PubMed ID: 32216369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
    Mekler V; Minakhin L; Borukhov S; Mustaev A; Severinov K
    J Mol Biol; 2014 Dec; 426(24):3973-3984. PubMed ID: 25311862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors.
    Goede B; Naji S; von Kampen O; Ilg K; Thomm M
    J Biol Chem; 2006 Oct; 281(41):30581-92. PubMed ID: 16885163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Concerted Protein and Nucleic Acid Conformational Changes Observed Prior to Nucleotide Incorporation in a Bacterial RNA Polymerase: Raman Crystallographic Evidence.
    Antonopoulos IH; Warner BA; Carey PR
    Biochemistry; 2015 Sep; 54(34):5297-305. PubMed ID: 26222797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How to switch the motor on: RNA polymerase initiation steps at the single-molecule level.
    Marchetti M; Malinowska A; Heller I; Wuite GJL
    Protein Sci; 2017 Jul; 26(7):1303-1313. PubMed ID: 28470684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Mekler V; Severinov K; Pupov D; Kulbachinskiy A
    Biochem J; 2017 Dec; 474(24):4053-4064. PubMed ID: 29101286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.