BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26979993)

  • 21. Frontotemporal lobar degeneration and amyotrophic lateral sclerosis: molecular similarities and differences.
    Neumann M
    Rev Neurol (Paris); 2013 Oct; 169(10):793-8. PubMed ID: 24011641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD.
    Boeynaems S; Bogaert E; Van Damme P; Van Den Bosch L
    Acta Neuropathol; 2016 Aug; 132(2):159-173. PubMed ID: 27271576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous nuclear ribonucleoproteins R and Q accumulate in pathological inclusions in FTLD-FUS.
    Gittings LM; Foti SC; Benson BC; Gami-Patel P; Isaacs AM; Lashley T
    Acta Neuropathol Commun; 2019 Feb; 7(1):18. PubMed ID: 30755280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways.
    Wang T; Jiang X; Chen G; Xu J
    Neurobiol Aging; 2015 Jan; 36(1):527-35. PubMed ID: 25192599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
    Vatovec S; Kovanda A; Rogelj B
    Neurobiol Aging; 2014 Oct; 35(10):2421.e1-2421.e12. PubMed ID: 24836899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma.
    Bentmann E; Haass C; Dormann D
    FEBS J; 2013 Sep; 280(18):4348-70. PubMed ID: 23587065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD).
    Lourenco GF; Janitz M; Huang Y; Halliday GM
    Neurobiol Dis; 2015 Oct; 82():445-454. PubMed ID: 26220395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FUS pathology in basophilic inclusion body disease.
    Munoz DG; Neumann M; Kusaka H; Yokota O; Ishihara K; Terada S; Kuroda S; Mackenzie IR
    Acta Neuropathol; 2009 Nov; 118(5):617-27. PubMed ID: 19830439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for RNA recognition by the N-terminal tandem RRM domains of human RBM45.
    Chen X; Yang Z; Wang W; Qian K; Liu M; Wang J; Wang M
    Nucleic Acids Res; 2021 Mar; 49(5):2946-2958. PubMed ID: 33577684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of matrin 3 gene in French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with amyotrophic lateral sclerosis patients.
    Millecamps S; De Septenville A; Teyssou E; Daniau M; Camuzat A; Albert M; LeGuern E; Galimberti D; ; Brice A; Marie Y; Le Ber I
    Neurobiol Aging; 2014 Dec; 35(12):2882.e13-2882.e15. PubMed ID: 25158920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of TDP-43 in the pathogenesis of ALS and FTLD.
    Baralle M; Buratti E; Baralle FE
    Biochem Soc Trans; 2013 Dec; 41(6):1536-40. PubMed ID: 24256250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum.
    Cruts M; Gijselinck I; Van Langenhove T; van der Zee J; Van Broeckhoven C
    Trends Neurosci; 2013 Aug; 36(8):450-9. PubMed ID: 23746459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS-positive inclusions.
    Gami-Patel P; Bandopadhyay R; Brelstaff J; Revesz T; Lashley T
    Neurobiol Aging; 2016 Oct; 46():192-203. PubMed ID: 27500866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower motor neuron involvement in TAR DNA-binding protein of 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
    Riku Y; Watanabe H; Yoshida M; Tatsumi S; Mimuro M; Iwasaki Y; Katsuno M; Iguchi Y; Masuda M; Senda J; Ishigaki S; Udagawa T; Sobue G
    JAMA Neurol; 2014 Feb; 71(2):172-9. PubMed ID: 24378564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis of amyotrophic lateral sclerosis.
    Liscic RM; Breljak D
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):370-2. PubMed ID: 20655970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins.
    Dreser A; Vollrath JT; Sechi A; Johann S; Roos A; Yamoah A; Katona I; Bohlega S; Wiemuth D; Tian Y; Schmidt A; Vervoorts J; Dohmen M; Beyer C; Anink J; Aronica E; Troost D; Weis J; Goswami A
    Cell Death Differ; 2017 Oct; 24(10):1655-1671. PubMed ID: 28622300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic mutations in RNA-binding proteins and their roles in ALS.
    Kapeli K; Martinez FJ; Yeo GW
    Hum Genet; 2017 Sep; 136(9):1193-1214. PubMed ID: 28762175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An acetylation switch controls TDP-43 function and aggregation propensity.
    Cohen TJ; Hwang AW; Restrepo CR; Yuan CX; Trojanowski JQ; Lee VM
    Nat Commun; 2015 Jan; 6():5845. PubMed ID: 25556531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy.
    Arai T; Hasegawa M; Nonoka T; Kametani F; Yamashita M; Hosokawa M; Niizato K; Tsuchiya K; Kobayashi Z; Ikeda K; Yoshida M; Onaya M; Fujishiro H; Akiyama H
    Neuropathology; 2010 Apr; 30(2):170-81. PubMed ID: 20102522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD.
    Fujioka Y; Ishigaki S; Masuda A; Iguchi Y; Udagawa T; Watanabe H; Katsuno M; Ohno K; Sobue G
    Sci Rep; 2013; 3():2388. PubMed ID: 23925123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.