These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26980179)

  • 1. Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps.
    Jin SH; Jang SC; Lee B; Jeong HH; Jeong SG; Lee SS; Kim KP; Lee CS
    Lab Chip; 2016 Apr; 16(8):1358-65. PubMed ID: 26980179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope.
    Koszul R; Kim KP; Prentiss M; Kleckner N; Kameoka S
    Cell; 2008 Jun; 133(7):1188-201. PubMed ID: 18585353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.
    Zhao Y; Lai HS; Zhang G; Lee GB; Li WJ
    Lab Chip; 2014 Nov; 14(22):4426-34. PubMed ID: 25254511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel.
    Lin L; Mawatari K; Morikawa K; Kitamori T
    Anal Sci; 2016; 32(1):75-8. PubMed ID: 26753709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CellClamper: A Convenient Microfluidic Device for Time-Lapse Imaging of Yeast.
    Schmidt GW; Frey O; Rudolf F
    Methods Mol Biol; 2018; 1672():537-555. PubMed ID: 29043647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells.
    Cai B; Ji TT; Wang N; Li XB; He RX; Liu W; Wang G; Zhao XZ; Wang L; Wang Z
    Lab Chip; 2019 Jan; 19(3):422-431. PubMed ID: 30575843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-neuronal cell culture and monitoring platform using a fully transparent microfluidic DEP device.
    Kim H; Lee IK; Taylor K; Richters K; Baek DH; Ryu JH; Cho SJ; Jung YH; Park DW; Novello J; Bong J; Suminski AJ; Dingle AM; Blick RH; Williams JC; Dent EW; Ma Z
    Sci Rep; 2018 Sep; 8(1):13194. PubMed ID: 30181589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening.
    Espulgar W; Aoki W; Ikeuchi T; Mita D; Saito M; Lee JK; Tamiya E
    Lab Chip; 2015 Sep; 15(17):3572-80. PubMed ID: 26215661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.
    Delincé MJ; Bureau JB; López-Jiménez AT; Cosson P; Soldati T; McKinney JD
    Lab Chip; 2016 Aug; 16(17):3276-85. PubMed ID: 27425421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A diffusion-based microfluidic device for single-cell RNA-seq.
    Sarma M; Lee J; Ma S; Li S; Lu C
    Lab Chip; 2019 Mar; 19(7):1247-1256. PubMed ID: 30815639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic cell-trapping device to study dynamic host-microbe interactions at the single-cell level.
    Toniolo C; Delincé M; McKinney JD
    Methods Cell Biol; 2018; 147():199-213. PubMed ID: 30165958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.