These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26980485)

  • 1. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules.
    Dias P; Javimczik S; Benevit M; Veit H; Bernardes AM
    Waste Manag; 2016 Nov; 57():220-225. PubMed ID: 26980485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules.
    Dias P; Javimczik S; Benevit M; Veit H
    Waste Manag; 2017 Feb; 60():716-722. PubMed ID: 27596942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photovoltaic solar panels of crystalline silicon: Characterization and separation.
    Dias PR; Benevit MG; Veit HM
    Waste Manag Res; 2016 Mar; 34(3):235-45. PubMed ID: 26787682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling.
    Ardente F; Latunussa CEL; Blengini GA
    Waste Manag; 2019 May; 91():156-167. PubMed ID: 31203937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
    Savvilotidou V; Antoniou A; Gidarakos E
    Waste Manag; 2017 Jan; 59():394-402. PubMed ID: 27742228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovering valuable metals from recycled photovoltaic modules.
    Yi YK; Kim HS; Tran T; Hong SK; Kim MJ
    J Air Waste Manag Assoc; 2014 Jul; 64(7):797-807. PubMed ID: 25122953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment.
    Wang R; Song E; Zhang C; Zhuang X; Ma E; Bai J; Yuan W; Wang J
    RSC Adv; 2019 Jun; 9(32):18115-18123. PubMed ID: 35515232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and economic evaluation of solar panel wastes recycling.
    Gönen Ç; Kaplanoğlu E
    Waste Manag Res; 2019 Apr; 37(4):412-418. PubMed ID: 30786832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive review of the global trends and future perspectives for recycling of decommissioned photovoltaic panels.
    Akram Cheema H; Ilyas S; Kang H; Kim H
    Waste Manag; 2024 Feb; 174():187-202. PubMed ID: 38056367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource recovery of scrap silicon solar battery cell.
    Lee CH; Hung CE; Tsai SL; Popuri SR; Liao CH
    Waste Manag Res; 2013 May; 31(5):518-24. PubMed ID: 23460539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global status of recycling waste solar panels: A review.
    Xu Y; Li J; Tan Q; Peters AL; Yang C
    Waste Manag; 2018 May; 75():450-458. PubMed ID: 29472153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels.
    Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D
    Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of cuprous chloride and simultaneous recovery of Ag and Pd from waste printed circuit boards.
    Zhang Z; Zhang FS
    J Hazard Mater; 2013 Oct; 261():398-404. PubMed ID: 23973472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential.
    Charles RG; Douglas P; Hallin IL; Matthews I; Liversage G
    Waste Manag; 2017 Feb; 60():505-520. PubMed ID: 27890594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and comprehensive recycling of valuable components from scrapped Si-based photovoltaic panels.
    Ding Y; He J; Zhang S; Jian J; Shi Z; Cao A
    Waste Manag; 2024 Mar; 175():183-190. PubMed ID: 38211472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.
    Yang X; Sun L; Xiang J; Hu S; Su S
    Waste Manag; 2013 Feb; 33(2):462-73. PubMed ID: 22951495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling the recycling of metals from the shredder light fraction derived from waste of electrical and electronic equipment via continuous pyrolysis process.
    Diaz F; Latacz D; Friedrich B
    Waste Manag; 2023 Dec; 172():335-346. PubMed ID: 37948829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient and selective leaching of silver from electronic scrap in the base-activated persulfate - ammonia system.
    Hyk W; Kitka K
    Waste Manag; 2017 Feb; 60():601-608. PubMed ID: 28057419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.