These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2698078)

  • 1. Effects of calcium, ATP, and lipids on human erythrocyte sugar transport.
    Carruthers A; Helgerson AL; Hebert DN; Tefft RE; Naderi S; Melchior DL
    Ann N Y Acad Sci; 1989; 568():52-67. PubMed ID: 2698078
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
    Levine KB; Cloherty EK; Fidyk NJ; Carruthers A
    Biochemistry; 1998 Sep; 37(35):12221-32. PubMed ID: 9724536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte carbohydrate metabolism. II. Chromatographic isolation of monophosphoglycerate, diphosphoglycerate, and adenosine triphosphate and their metabolic turnover with glucose carbon.
    BARLETT GR; MARLOW AA
    J Lab Clin Med; 1953 Aug; 42(2):188-92. PubMed ID: 13069864
    [No Abstract]   [Full Text] [Related]  

  • 4. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS; Fidyk N; Carruthers A
    Biochemistry; 2000 Mar; 39(11):3005-14. PubMed ID: 10715121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THE CONTROL OF ERYTHROCYTE GLYCOLYSIS BY ACTIVE CATION TRANSPORT.
    MINAKAMI S; KAKINUMA K; YOSHIKAWA H
    Biochim Biophys Acta; 1964 Aug; 90():434-6. PubMed ID: 14220740
    [No Abstract]   [Full Text] [Related]  

  • 6. ATP-dependent transport systems for organic anions.
    Zimniak P; Awasthi YC
    Hepatology; 1993 Feb; 17(2):330-9. PubMed ID: 8428732
    [No Abstract]   [Full Text] [Related]  

  • 7. [Active and passive calcium transport in human erythrocyte ghosts].
    Porzig H
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):426-7. PubMed ID: 4253851
    [No Abstract]   [Full Text] [Related]  

  • 8. Adenosine triphosphate content and glucose uptake of human erythrocytes and the influence of insulin.
    BURN GP
    Biochim Biophys Acta; 1962 May; 59():347-54. PubMed ID: 13874933
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of adenosine triphosphate in the transport of phosphate in the human erythrocyte.
    GOURLEY DR
    Arch Biochem Biophys; 1952 Sep; 40(1):1-12. PubMed ID: 12997182
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes.
    Smeets EF; Comfurius P; Bevers EM; Zwaal RF
    Biochim Biophys Acta; 1994 Nov; 1195(2):281-6. PubMed ID: 7947922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A BIOCHEMICAL STUDY OF THE X-RADIATION-INDUCED INHIBITION OF SODIUM TRANSPORT (NA PUMP) IN HUMAN ERYTHROCYTES.
    BRESCIANI F; AURICCHIO F; FIORE C
    Radiat Res; 1964 Jul; 22():463-77. PubMed ID: 14155860
    [No Abstract]   [Full Text] [Related]  

  • 14. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation of the human erythrocyte glucose transporter is essential for glucose transport activity.
    Feugeas JP; NĂ©el D; Pavia AA; Laham A; Goussault Y; Derappe C
    Biochim Biophys Acta; 1990 Nov; 1030(1):60-4. PubMed ID: 2265193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Kinetic analysis of the carrier mechanism for the sugar transport by the erythrocyte membrane. Mobility of the free and loaded carrier].
    Fenstermacher J; Wilbrandt W
    Helv Physiol Pharmacol Acta; 1966; 24(2):C16-9. PubMed ID: 5973813
    [No Abstract]   [Full Text] [Related]  

  • 17. The shape change of erythrocytes: new approaches to an old problem.
    Scheven C
    Acta Histochem Suppl; 1986; 33():107-13. PubMed ID: 3090617
    [No Abstract]   [Full Text] [Related]  

  • 18. Alteration of calcium transport in Duchenne erythrocytes.
    Mollman JE; Cardenas JC; Pleasure DE
    Neurology; 1980 Nov; 30(11):1236-9. PubMed ID: 7191520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ribose metabolism and ATP content of normal and methemoglobin-containing anuclear erythrocytes].
    LACHHEIN L; GRADE K; MATTHIES H
    Acta Biol Med Ger; 1961; 7():434-42. PubMed ID: 14461368
    [No Abstract]   [Full Text] [Related]  

  • 20. Evidence that the uptake of tri-iodo-L-thyronine by human erythrocytes is carrier-mediated but not energy-dependent.
    Docter R; Krenning EP; Bos G; Fekkes DF; Hennemann G
    Biochem J; 1982 Oct; 208(1):27-34. PubMed ID: 7159396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.