BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 26981231)

  • 1. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation.
    Segalés J; Islam AB; Kumar R; Liu QC; Sousa-Victor P; Dilworth FJ; Ballestar E; Perdiguero E; Muñoz-Cánoves P
    Skelet Muscle; 2016; 6():9. PubMed ID: 26981231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program.
    Chatterjee B; Wolff DW; Jothi M; Mal M; Mal AK
    Skelet Muscle; 2016; 6():28. PubMed ID: 27551368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential role for p38alpha MAPK but not p38gamma MAPK in Igf2 expression and myoblast differentiation.
    Lovett FA; Cosgrove RA; Gonzalez I; Pell JM
    Endocrinology; 2010 Sep; 151(9):4368-80. PubMed ID: 20610565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair.
    Brien P; Pugazhendhi D; Woodhouse S; Oxley D; Pell JM
    Stem Cells; 2013 Aug; 31(8):1597-610. PubMed ID: 23592450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation.
    Perdiguero E; Ruiz-Bonilla V; Gresh L; Hui L; Ballestar E; Sousa-Victor P; Baeza-Raja B; Jardí M; Bosch-Comas A; Esteller M; Caelles C; Serrano AL; Wagner EF; Muñoz-Cánoves P
    EMBO J; 2007 Mar; 26(5):1245-56. PubMed ID: 17304211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong induction of the Tis11B gene in myogenic differentiation.
    Busse M; Schwarzburger M; Berger F; Hacker C; Munz B
    Eur J Cell Biol; 2008 Jan; 87(1):31-8. PubMed ID: 17889962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative expression profiling identifies differential roles for Myogenin and p38α MAPK signaling in myogenesis.
    Liu QC; Zha XH; Faralli H; Yin H; Louis-Jeune C; Perdiguero E; Pranckeviciene E; Muñoz-Cànoves P; Rudnicki MA; Brand M; Perez-Iratxeta C; Dilworth FJ
    J Mol Cell Biol; 2012 Dec; 4(6):386-97. PubMed ID: 22847234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation.
    Consalvi S; Brancaccio A; Dall'Agnese A; Puri PL; Palacios D
    Nat Commun; 2017 Jan; 8():13956. PubMed ID: 28067271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo.
    Takaesu G; Kang JS; Bae GU; Yi MJ; Lee CM; Reddy EP; Krauss RS
    J Cell Biol; 2006 Nov; 175(3):383-8. PubMed ID: 17074887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion.
    Quach NL; Biressi S; Reichardt LF; Keller C; Rando TA
    Mol Biol Cell; 2009 Jul; 20(14):3422-35. PubMed ID: 19458188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective requirement of p38alpha MAPK in cytokine-dependent, but not antigen receptor-dependent, Th1 responses.
    Berenson LS; Yang J; Sleckman BP; Murphy TL; Murphy KM
    J Immunol; 2006 Apr; 176(8):4616-21. PubMed ID: 16585552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation.
    Mozzetta C; Consalvi S; Saccone V; Forcales SV; Puri PL; Palacios D
    Cell Cycle; 2011 Jan; 10(2):191-8. PubMed ID: 21220942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell.
    Jones NC; Tyner KJ; Nibarger L; Stanley HM; Cornelison DD; Fedorov YV; Olwin BB
    J Cell Biol; 2005 Apr; 169(1):105-16. PubMed ID: 15824134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activin A induction of erythroid differentiation through MKK6-p38alpha/p38beta pathway is inhibited by follistatin.
    Huang HM; Li YC; Chung MH
    J Cell Physiol; 2010 Jun; 223(3):687-94. PubMed ID: 20162623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of mitochondrial and nuclear p38α signaling: a novel mechanism of estrogen neuroprotection in cerebral ischemia.
    Han D; Scott EL; Dong Y; Raz L; Wang R; Zhang Q
    Mol Cell Endocrinol; 2015 Jan; 400():21-31. PubMed ID: 25462588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy.
    Yuasa K; Okubo K; Yoda M; Otsu K; Ishii Y; Nakamura M; Itoh Y; Horiuchi K
    Sci Rep; 2018 Jun; 8(1):9037. PubMed ID: 29899565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: the p38alpha-JNK connection.
    Perdiguero E; Ruiz-Bonilla V; Serrano AL; Muñoz-Cánoves P
    Cell Cycle; 2007 Jun; 6(11):1298-303. PubMed ID: 17534150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin profiling reveals TFAP4 as a critical transcriptional regulator of bovine satellite cell differentiation.
    Lyu P; Jiang H
    BMC Genomics; 2024 Mar; 25(1):272. PubMed ID: 38475725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling.
    Veeranki S; Lominadze D; Tyagi SC
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(2):H325-34. PubMed ID: 25980021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.