These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26981329)

  • 1. Incorporating Spatial Models in Visual Field Test Procedures.
    Rubinstein NJ; McKendrick AM; Turpin A
    Transl Vis Sci Technol; 2016 Mar; 5(2):7. PubMed ID: 26981329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new static visual field test algorithm: the Ambient Interactive ZEST (AIZE).
    Nomoto H; Matsumoto C; Okuyama S; Kimura S; Inoue S; Yamanaka K; Kusaka S
    Sci Rep; 2023 Sep; 13(1):14945. PubMed ID: 37696993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customized, automated stimulus location choice for assessment of visual field defects.
    Chong LX; McKendrick AM; Ganeshrao SB; Turpin A
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3265-74. PubMed ID: 24781947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trail-Traced Threshold Test (T4) With a Weighted Binomial Distribution for a Psychophysical Test.
    Gong Y; Zhu H; Miranda M; Crabb DP; Yang H; Bi W; Garway-Heath DF
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2787-2800. PubMed ID: 33544681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST.
    Turpin A; Morgan WH; McKendrick AM
    Transl Vis Sci Technol; 2018 Sep; 7(5):35. PubMed ID: 30402342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Entropy Pursuit for Fast and Accurate Perimetry Testing.
    Wild D; Kucur SS; Sznitman R
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3414-3424. PubMed ID: 28692736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4787-95. PubMed ID: 14578400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Nov; 82(11):981-7. PubMed ID: 16317375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):709-15. PubMed ID: 11867588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma.
    Turpin A; Jankovic D; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1627-34. PubMed ID: 17389493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning.
    Montesano G; Lazaridis G; Ometto G; Crabb DP; Garway-Heath DF
    Transl Vis Sci Technol; 2023 Oct; 12(10):10. PubMed ID: 37831447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Patient-Tailored Perimetry: Automated Perimetry Can Be Improved by Seeding Procedures With Patient-Specific Structural Information.
    Denniss J; McKendrick AM; Turpin A
    Transl Vis Sci Technol; 2013 May; 2(4):3. PubMed ID: 24049720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the GOANNA Visual Field Algorithm Using Artificial Scotoma Generation on Human Observers.
    Chong LX; Turpin A; McKendrick AM
    Transl Vis Sci Technol; 2016 Sep; 5(5):1. PubMed ID: 27622080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range.
    Otarola F; Chen A; Morales E; Yu F; Afifi A; Caprioli J
    JAMA Ophthalmol; 2016 May; 134(5):496-502. PubMed ID: 26967170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement precision in a series of visual fields acquired by the standard and fast versions of the Swedish interactive thresholding algorithm: analysis of large-scale data from clinics.
    Saunders LJ; Russell RA; Crabb DP
    JAMA Ophthalmol; 2015 Jan; 133(1):74-80. PubMed ID: 25340390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining perimetric suprathreshold and threshold procedures to reduce measurement variability in areas of visual field loss.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Jan; 82(1):43-51. PubMed ID: 15630403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Study Between the SORS and Dynamic Strategy Visual Field Testing Methods on Glaucomatous and Healthy Subjects.
    Kucur ŞS; Häckel S; Stapelfeldt J; Odermatt J; Iliev ME; Abegg M; Sznitman R; Höhn R
    Transl Vis Sci Technol; 2020 Dec; 9(13):3. PubMed ID: 33344047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Visual Field Examination of the Macula Using Structural Information.
    Montesano G; Rossetti LM; Allegrini D; Romano MR; Crabb DP
    Transl Vis Sci Technol; 2018 Nov; 7(6):36. PubMed ID: 30619656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method to Measure the Rate of Glaucomatous Visual Field Change.
    Caprioli J; Mohamed L; Morales E; Rabiolo A; Sears N; Pradtana H; Alizadeh R; Yu F; Afifi AA; Coleman AL; Nouri-Mahdavi K
    Transl Vis Sci Technol; 2018 Nov; 7(6):14. PubMed ID: 30519499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Framework for the Integration of Structural Data Into Perimetric Examinations.
    Evans JC; Ometto G; Crabb DP; Montesano G
    Transl Vis Sci Technol; 2024 Jun; 13(6):19. PubMed ID: 38916881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.