BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26982167)

  • 1. Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery.
    Yu Z; Zheng Y; Parker RM; Lan Y; Wu Y; Coulston RJ; Zhang J; Scherman OA; Abell C
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8811-20. PubMed ID: 26982167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.
    Liu J; Lan Y; Yu Z; Tan CS; Parker RM; Abell C; Scherman OA
    Acc Chem Res; 2017 Feb; 50(2):208-217. PubMed ID: 28075551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial assembly of dendritic microcapsules with host-guest chemistry.
    Zheng Y; Yu Z; Parker RM; Wu Y; Abell C; Scherman OA
    Nat Commun; 2014 Dec; 5():5772. PubMed ID: 25511608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cucurbit[7]uril-Directed Assembly of Colloidal Membrane and Stimuli-Responsive Microcapsules at the liquid-liquid Interface.
    Kulathinte Meethal S; Sasmal R; Pahwa M; C S; Das Saha N; Agasti SS
    Langmuir; 2018 Jan; 34(2):693-699. PubMed ID: 29262683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step fabrication of supramolecular microcapsules from microfluidic droplets.
    Zhang J; Coulston RJ; Jones ST; Geng J; Scherman OA; Abell C
    Science; 2012 Feb; 335(6069):690-4. PubMed ID: 22323815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics.
    Xu X; Appel EA; Liu X; Parker RM; Scherman OA; Abell C
    Biomacromolecules; 2015 Sep; 16(9):2743-9. PubMed ID: 26256409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.
    Zuo C; Peng J; Cong Y; Dai X; Zhang X; Zhao S; Zhang X; Ma L; Wang B; Wei H
    J Colloid Interface Sci; 2018 Mar; 514():122-131. PubMed ID: 29248814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cyclic topology toward enhanced drug delivery, from linear and tadpole-like to dumbbell-shaped copolymers.
    Kang G; Liu Y; Li L; Sun L; Ma W; Meng C; Ma L; Zheng G; Chang C; Wei H
    Chem Commun (Camb); 2020 Mar; 56(20):3003-3006. PubMed ID: 32044897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules.
    Parker RM; Zhang J; Zheng Y; Coulston RJ; Smith CA; Salmon AR; Yu Z; Scherman OA; Abell C
    Adv Funct Mater; 2015 Jul; 25(26):4091-4100. PubMed ID: 26213532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive supramolecular polypeptide-based micelles and reverse micelles mediated by hydrogen-bonding interactions or host-guest chemistry: characterization and in vitro controlled drug release.
    Chen Y; Dong CM
    J Phys Chem B; 2010 Jun; 114(22):7461-8. PubMed ID: 20469900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation.
    Cheng CC; Chang FC; Kao WY; Hwang SM; Liao LC; Chang YJ; Liang MC; Chen JK; Lee DJ
    Acta Biomater; 2016 Mar; 33():194-202. PubMed ID: 26796210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular hydrogel microcapsules
    Yu Z; Zhang J; Coulston RJ; Parker RM; Biedermann F; Liu X; Scherman OA; Abell C
    Chem Sci; 2015 Aug; 6(8):4929-4933. PubMed ID: 28717496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.
    Yang H; Yuan B; Zhang X; Scherman OA
    Acc Chem Res; 2014 Jul; 47(7):2106-15. PubMed ID: 24766328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications.
    Liu Z; Lin W; Liu Y
    Acc Chem Res; 2022 Dec; 55(23):3417-3429. PubMed ID: 36380600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction-sensitive amphiphilic triblock copolymers self-assemble into stimuli-responsive micelles for drug delivery.
    Toughraï S; Malinova V; Masciadri R; Menon S; Tanner P; Palivan C; Bruns N; Meier W
    Macromol Biosci; 2015 Apr; 15(4):481-9. PubMed ID: 25641960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric capsules and micelles as promising carriers of anticancer drugs.
    Kubiak T
    Polim Med; 2022; 52(1):37-50. PubMed ID: 35196423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbit[8]uril-Based Polymers and Polymer Materials.
    Zou H; Liu J; Li Y; Li X; Wang X
    Small; 2018 Nov; 14(46):e1802234. PubMed ID: 30168673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular switching of the self-assembly of cyclic peptide-polymer conjugates via host-guest chemistry.
    Song Q; Yang J; Rho JY; Perrier S
    Chem Commun (Camb); 2019 May; 55(36):5291-5294. PubMed ID: 30994130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular Purely Organic Room-Temperature Phosphorescence.
    Ma XK; Liu Y
    Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release.
    Liang Y; Sun Y; Fu X; Lin Y; Meng Z; Meng Y; Niu J; Lai Y; Sun Y
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):525-532. PubMed ID: 32037890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.