These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 26982625)

  • 1. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamaterial perfect absorber based hot electron photodetection.
    Li W; Valentine J
    Nano Lett; 2014 Jun; 14(6):3510-4. PubMed ID: 24837991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing Plasmon-Induced Hot Carriers at the Interfaces With Ferroelectrics.
    Kumar V; O'Donnell SC; Sang DL; Maggard PA; Wang G
    Front Chem; 2019; 7():299. PubMed ID: 31139615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
    Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA
    Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-induced hot electron transfer in AgNW@TiO
    Cheng J; Li Y; Plissonneau M; Li J; Li J; Chen R; Tang Z; Pautrot-d'Alençon L; He T; Tréguer-Delapierre M; Delville MH
    Sci Rep; 2018 Sep; 8(1):14136. PubMed ID: 30237426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing hot carrier effects in Pt-decorated plasmonic heterostructures.
    Salmón-Gamboa JU; Romero-Gómez M; Roth DJ; Barber MJ; Wang P; Fairclough SM; Nasir ME; Krasavin AV; Dickson W; Zayats AV
    Faraday Discuss; 2019 May; 214(0):387-397. PubMed ID: 30801594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.