These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 26983501)
1. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays. Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501 [TBL] [Abstract][Full Text] [Related]
2. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546 [TBL] [Abstract][Full Text] [Related]
3. Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Yin J; Zang Y; Xu B; Li S; Kang J; Fang Y; Wu Z; Li J Nanoscale; 2014 Apr; 6(8):3934-40. PubMed ID: 24162844 [TBL] [Abstract][Full Text] [Related]
4. Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy. Charconnet M; Kuttner C; Plou J; García-Pomar JL; Mihi A; Liz-Marzán LM; Seifert A Small Methods; 2021 Oct; 5(10):e2100453. PubMed ID: 34927949 [TBL] [Abstract][Full Text] [Related]
5. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic Surface Lattice Resonances: Theory and Computation. Cherqui C; Bourgeois MR; Wang D; Schatz GC Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203 [TBL] [Abstract][Full Text] [Related]
7. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. Shibata K; Fujii S; Sun Q; Miura A; Ueno K J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196 [TBL] [Abstract][Full Text] [Related]
8. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials. Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837 [TBL] [Abstract][Full Text] [Related]
9. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement. Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522 [TBL] [Abstract][Full Text] [Related]
10. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances. Sharma Y; Dhawan A Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH; You MH; Kim GH; Nam JM Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930 [TBL] [Abstract][Full Text] [Related]
12. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896 [TBL] [Abstract][Full Text] [Related]
13. Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter. Xue Y; Ding C; Rong Y; Ma Q; Pan C; Wu E; Wu B; Zeng H Small; 2017 Sep; 13(36):. PubMed ID: 28783235 [TBL] [Abstract][Full Text] [Related]
14. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029 [TBL] [Abstract][Full Text] [Related]
17. Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion. Xi M; Xu C; Zhong L; Liu C; Li N; Zhang S; Wang Z Phys Chem Chem Phys; 2024 Feb; 26(7):6196-6207. PubMed ID: 38305020 [TBL] [Abstract][Full Text] [Related]
18. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering. Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228 [TBL] [Abstract][Full Text] [Related]
19. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. Pasquale AJ; Reinhard BM; Dal Negro L ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951 [TBL] [Abstract][Full Text] [Related]
20. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]