BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26983614)

  • 1. Use and Evaluation of Newly Synthesized Fluorescence Probes to Detect Generated OH• Radicals in Fibroblast Cells.
    Salimi R; Yener N; Safari R
    J Fluoresc; 2016 May; 26(3):919-24. PubMed ID: 26983614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species.
    Setsukinai K; Urano Y; Kakinuma K; Majima HJ; Nagano T
    J Biol Chem; 2003 Jan; 278(5):3170-5. PubMed ID: 12419811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy.
    Price M; Reiners JJ; Santiago AM; Kessel D
    Photochem Photobiol; 2009; 85(5):1177-81. PubMed ID: 19508643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters.
    Zhuang M; Ding C; Zhu A; Tian Y
    Anal Chem; 2014 Feb; 86(3):1829-36. PubMed ID: 24383624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation.
    Manevich Y; Held KD; Biaglow JE
    Radiat Res; 1997 Dec; 148(6):580-91. PubMed ID: 9399704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe.
    Liu S; Zhao J; Zhang K; Yang L; Sun M; Yu H; Yan Y; Zhang Y; Wu L; Wang S
    Analyst; 2016 Apr; 141(7):2296-302. PubMed ID: 26958658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ratiometric fluorescent probe for the detection of endogenous hydroxyl radicals in living cells.
    Wu B; Yang J; Zhang J; Li Z; Li H; Yang XF
    Talanta; 2019 May; 196():317-324. PubMed ID: 30683369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The detection and quantification of highly reactive oxygen species using the novel HPF fluorescence probe in a rat model of focal cerebral ischemia.
    Tomizawa S; Imai H; Tsukada S; Simizu T; Honda F; Nakamura M; Nagano T; Urano Y; Matsuoka Y; Fukasaku N; Saito N
    Neurosci Res; 2005 Nov; 53(3):304-13. PubMed ID: 16168507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage.
    Indo HP; Davidson M; Yen HC; Suenaga S; Tomita K; Nishii T; Higuchi M; Koga Y; Ozawa T; Majima HJ
    Mitochondrion; 2007; 7(1-2):106-18. PubMed ID: 17307400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of sensors for reactive oxygen species based on fluorescein-phenol coupling: the case of 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid.
    Heyne B; Maurel V; Scaiano JC
    Org Biomol Chem; 2006 Mar; 4(5):802-7. PubMed ID: 16493462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation.
    Chen F; Ye J; Zhang X; Rojanasakul Y; Shi X
    Arch Biochem Biophys; 1997 Feb; 338(2):165-72. PubMed ID: 9028868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perylenebisimide-linked nitroxide for the detection of hydroxyl radicals.
    Maki T; Soh N; Fukaminato T; Nakajima H; Nakano K; Imato T
    Anal Chim Acta; 2009 Apr; 639(1-2):78-82. PubMed ID: 19345762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationally Designed Fluorescence
    Li H; Li X; Shi W; Xu Y; Ma H
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12830-12834. PubMed ID: 30109761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes.
    Alanazi M; Yong J; Wu M; Zhang Z; Tian D; Zhang R
    Chem Asian J; 2024 Apr; 19(8):e202400105. PubMed ID: 38447112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain in utero.
    Yan EB; Unthank JK; Castillo-Melendez M; Miller SL; Langford SJ; Walker DW
    J Appl Physiol (1985); 2005 Jun; 98(6):2304-10. PubMed ID: 15718409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New rhodamine nitroxide based fluorescent probes for intracellular hydroxyl radical identification in living cells.
    Yapici NB; Jockusch S; Moscatelli A; Mandalapu SR; Itagaki Y; Bates DK; Wiseman S; Gibson KM; Turro NJ; Bi L
    Org Lett; 2012 Jan; 14(1):50-3. PubMed ID: 22176578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals.
    Zhang L; Liang RP; Xiao SJ; Bai JM; Zheng LL; Zhan L; Zhao XJ; Qiu JD; Huang CZ
    Talanta; 2014 Jan; 118():339-47. PubMed ID: 24274306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of reactive oxygen species by Co(II) from H2O2 in the presence of chelators in relation to DNA damage and 2'-deoxyguanosine hydroxylation.
    Mao Y; Liu KJ; Jiang JJ; Shi X
    J Toxicol Environ Health; 1996 Jan; 47(1):61-75. PubMed ID: 8568912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate.
    Saran M; Summer KH
    Free Radic Res; 1999 Nov; 31(5):429-36. PubMed ID: 10547187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Illuminating the Function of the Hydroxyl Radical in the Brains of Mice with Depression Phenotypes by Two-Photon Fluorescence Imaging.
    Wang X; Li P; Ding Q; Wu C; Zhang W; Tang B
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4674-4678. PubMed ID: 30737982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.