These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26983802)

  • 1. Thermal niche estimators and the capability of poor dispersal species to cope with climate change.
    Sánchez-Fernández D; Rizzo V; Cieslak A; Faille A; Fresneda J; Ribera I
    Sci Rep; 2016 Mar; 6():23381. PubMed ID: 26983802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climatic stability, not average habitat temperature, determines thermal tolerance of subterranean beetles.
    Colado R; Pallarés S; Fresneda J; Mammola S; Rizzo V; Sánchez-Fernández D
    Ecology; 2022 Apr; 103(4):e3629. PubMed ID: 35018629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance.
    Tsai HY; Rubenstein DR; Chen BF; Liu M; Chan SF; Chen DP; Sun SJ; Yuan TN; Shen SF
    Elife; 2020 Aug; 9():. PubMed ID: 32807299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of thermal performance can constrain dispersal during range shifting.
    Hillaert J; Boeye J; Stoks R; Bonte D
    J Biol Dyn; 2015; 9():317-35. PubMed ID: 26406927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity.
    Comte L; Olden JD
    Glob Chang Biol; 2017 Feb; 23(2):728-736. PubMed ID: 27406402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche width predicts extinction from climate change and vulnerability of tropical species.
    Grinder RM; Wiens JJ
    Glob Chang Biol; 2023 Feb; 29(3):618-630. PubMed ID: 36260367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL
    PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the congruence of thermal niche estimations derived from distribution and physiological data. A test using diving beetles.
    Sánchez-Fernández D; Aragón P; Bilton DT; Lobo JM
    PLoS One; 2012; 7(10):e48163. PubMed ID: 23133560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert.
    Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients.
    Monahan WB
    PLoS One; 2009 Nov; 4(11):e7921. PubMed ID: 19936234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for using niche models to estimate impacts of climate change on species distributions.
    Anderson RP
    Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae.
    Martínez B; Arenas F; Trilla A; Viejo RM; Carreño F
    Glob Chang Biol; 2015 Apr; 21(4):1422-33. PubMed ID: 24917488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.
    Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P
    Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat freezes niche evolution.
    Araújo MB; Ferri-Yáñez F; Bozinovic F; Marquet PA; Valladares F; Chown SL
    Ecol Lett; 2013 Sep; 16(9):1206-19. PubMed ID: 23869696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phyloclimatic study of Cyclamen.
    Yesson C; Culham A
    BMC Evol Biol; 2006 Sep; 6():72. PubMed ID: 16987413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining ecological niche models with experimental seed germination to estimate the effect of climate change on the distribution of endangered plant species in the Brazilian Cerrado.
    Ferreira RB; Parreira MR; de Arruda FV; Falcão MJA; de Freitas Mansano V; Nabout JC
    Environ Monit Assess; 2022 Mar; 194(4):283. PubMed ID: 35294661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle.
    Riddell EA; Mutanen M; Ghalambor CK
    Glob Chang Biol; 2023 Sep; 29(18):5184-5198. PubMed ID: 37376709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.