These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26984059)

  • 41. Criteria for effective design, construction, and gene knockdown by shRNA vectors.
    Taxman DJ; Livingstone LR; Zhang J; Conti BJ; Iocca HA; Williams KL; Lich JD; Ting JP; Reed W
    BMC Biotechnol; 2006 Jan; 6():7. PubMed ID: 16433925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthetic shRNAs as potent RNAi triggers.
    Siolas D; Lerner C; Burchard J; Ge W; Linsley PS; Paddison PJ; Hannon GJ; Cleary MA
    Nat Biotechnol; 2005 Feb; 23(2):227-31. PubMed ID: 15619616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validating RNAi phenotypes in Drosophila using a synthetic RNAi-resistant transgene.
    Jonchere V; Bennett D
    PLoS One; 2013; 8(8):e70489. PubMed ID: 23950943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Creating mosaics in Drosophila.
    Perrimon N
    Int J Dev Biol; 1998; 42(3):243-7. PubMed ID: 9654004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Approaches for chemically synthesized siRNA and vector-mediated RNAi.
    Amarzguioui M; Rossi JJ; Kim D
    FEBS Lett; 2005 Oct; 579(26):5974-81. PubMed ID: 16199038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effective knockdown of multiple target genes by expressing the single transcript harbouring multi-cistronic shRNAs.
    Junn HJ; Kim JY; Seol DW
    Biochem Biophys Res Commun; 2010 Jun; 396(4):861-5. PubMed ID: 20451494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vectors and parameters that enhance the efficacy of RNAi-mediated gene disruption in transgenic Drosophila.
    Haley B; Foys B; Levine M
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11435-40. PubMed ID: 20534445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic mosaic screens in Drosophila mushroom bodies.
    Kao CF; Lee T
    Cold Spring Harb Protoc; 2013 Jan; 2013(1):. PubMed ID: 23282633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila--a role for dFoxO?
    Bednářová A; Kodrík D; Krishnan N
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():8-14. PubMed ID: 25814322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of lentivirally expressed siRNAs.
    Liu YP; Berkhout B
    Methods Mol Biol; 2013; 942():233-57. PubMed ID: 23027055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Specific inhibition of hTERT gene expression by short interfering RNAs in gastric cancer SGC7901 cell].
    Ma JP; Zhan WH; Wang JP; Peng JS; Gao JS; Yin QW
    Zhonghua Wai Ke Za Zhi; 2004 Nov; 42(22):1372-6. PubMed ID: 15634407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Making a better RNAi vector for Drosophila: use of intron spacers.
    Lee YS; Carthew RW
    Methods; 2003 Aug; 30(4):322-9. PubMed ID: 12828946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic odyssey to generate marked clones in Drosophila mosaics.
    Griffin R; Binari R; Perrimon N
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4756-63. PubMed ID: 24623854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The purine synthesis gene Prat2 is required for Drosophila metamorphosis, as revealed by inverted-repeat-mediated RNA interference.
    Ji Y; Clark DV
    Genetics; 2006 Mar; 172(3):1621-31. PubMed ID: 16322507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of shRNA inhibitors by variation of the terminal loop sequence.
    Schopman NC; Liu YP; Konstantinova P; ter Brake O; Berkhout B
    Antiviral Res; 2010 May; 86(2):204-11. PubMed ID: 20188764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila.
    Dietzl G; Chen D; Schnorrer F; Su KC; Barinova Y; Fellner M; Gasser B; Kinsey K; Oppel S; Scheiblauer S; Couto A; Marra V; Keleman K; Dickson BJ
    Nature; 2007 Jul; 448(7150):151-6. PubMed ID: 17625558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA interference by short hairpin RNAs expressed in vertebrate cells.
    Hannon GJ; Conklin DS
    Methods Mol Biol; 2004; 257():255-66. PubMed ID: 14770011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis.
    Kaya-Çopur A; Schnorrer F
    Methods Mol Biol; 2019; 1889():331-348. PubMed ID: 30367424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Flippase-Mediated GAL80/GAL4 Intersectional Resource for Dissecting Appendage Development in Drosophila.
    Smith BN; Ghazanfari AM; Bohm RA; Welch WP; Zhang B; Masly JP
    G3 (Bethesda); 2015 Aug; 5(10):2105-12. PubMed ID: 26276385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short hairpin RNA is more effective than long hairpin RNA in eliciting pointed loss-of-function phenotypes in Drosophila.
    Bartoletti R; Capozzoli B; Moore J; Moran J; Shrawder B; Vivekanand P
    Genesis; 2017 Jul; 55(7):. PubMed ID: 28464429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.