BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26984198)

  • 1. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative hepatic and extrahepatic enantioselective sulfoxidation of albendazole and fenbendazole in sheep and cattle.
    Virkel G; Lifschitz A; Sallovitz J; Pis A; Lanusse C
    Drug Metab Dispos; 2004 May; 32(5):536-44. PubMed ID: 15100176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications.
    Capece BP; Virkel GL; Lanusse CE
    Vet J; 2009 Sep; 181(3):241-50. PubMed ID: 19124257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation.
    Schlenk D
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral sulfoxidation of albendazole by the flavin adenine dinucleotide-containing and cytochrome P450-dependent monooxygenases from rat liver microsomes.
    Moroni P; Buronfosse T; Longin-Sauvageon C; Delatour P; Benoit E
    Drug Metab Dispos; 1995 Feb; 23(2):160-5. PubMed ID: 7736906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression.
    Hines RN; Cashman JR; Philpot RM; Williams DE; Ziegler DM
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):1-6. PubMed ID: 8128486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion.
    Leoni C; Buratti FM; Testai E
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):343-52. PubMed ID: 18845175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential role of the flavin-containing monooxygenases in the metabolism of endogenous compounds.
    Elfarra AA
    Chem Biol Interact; 1995 Apr; 96(1):47-55. PubMed ID: 7720104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential roles of flavin-containing monooxygenases in sulfoxidation reactions of l-methionine, N-acetyl-l-methionine and peptides containing l-methionine.
    Elfarra AA; Krause RJ
    Biochim Biophys Acta; 2005 Jan; 1703(2):183-9. PubMed ID: 15680226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism.
    Krueger SK; Williams DE
    Pharmacol Ther; 2005 Jun; 106(3):357-87. PubMed ID: 15922018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of flavin-containing monooxygenase (FMO) activities.
    Rose RL
    Curr Protoc Toxicol; 2002 Nov; Chapter 4():Unit4.9. PubMed ID: 20945301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prochiral sulfoxidation as a probe for flavin-containing monooxygenases.
    Yeung CK; Rettie AE
    Methods Mol Biol; 2006; 320():163-72. PubMed ID: 16719389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hepatic flavin-containing monooxygenase 3 in drug and chemical metabolism in adult humans.
    Cashman JR; Park SB; Berkman CE; Cashman LE
    Chem Biol Interact; 1995 Apr; 96(1):33-46. PubMed ID: 7720103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human and plant flavin-containing monooxygenase N-oxygenation of amines: detoxication vs. bioactivation.
    Cashman JR
    Drug Metab Rev; 2002 Aug; 34(3):513-21. PubMed ID: 12214663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH-dependent, regioselective S-oxidation of a thionosulfur- and thioether-containing xenobiotic, diethyldithiocarbamate methyl ester by rat liver microsomes.
    Madan A; Faiman MD
    Drug Metab Dispos; 1994; 22(2):324-30. PubMed ID: 8013289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of flavin-containing monooxygenases in non-mammalian eukaryotic organisms.
    Schlenk D
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Nov; 121(1-3):185-95. PubMed ID: 9972460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase.
    Rioz-Martínez A; Kopacz M; de Gonzalo G; Torres Pazmiño DE; Gotor V; Fraaije MW
    Org Biomol Chem; 2011 Mar; 9(5):1337-41. PubMed ID: 21225061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system.
    He YC; Ma CL; Yang ZX; Zhou M; Xing Z; Ma JT; Yu HL
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10329-37. PubMed ID: 24092008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin adenine dinucleotide--dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals.
    Hajjar NP; Hodgson E
    Science; 1980 Sep; 209(4461):1134-6. PubMed ID: 7403873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione.
    Henderson MC; Krueger SK; Stevens JF; Williams DE
    Chem Res Toxicol; 2004 May; 17(5):633-40. PubMed ID: 15144220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.