BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26984360)

  • 1. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel.
    Cochis A; Grad S; Stoddart MJ; Farè S; Altomare L; Azzimonti B; Alini M; Rimondini L
    Sci Rep; 2017 Mar; 7():45018. PubMed ID: 28332587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles.
    Park H; Kim MH; Yoon YI; Park WH
    Carbohydr Polym; 2017 Feb; 157():775-783. PubMed ID: 27987990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.
    Cochis A; Bonetti L; Sorrentino R; Contessi Negrini N; Grassi F; Leigheb M; Rimondini L; Farè S
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K
    Chen YC; Chen YH
    Sci Total Environ; 2019 Mar; 655():958-967. PubMed ID: 30609636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing.
    Kim MH; Park H; Nam HC; Park SR; Jung JY; Park WH
    Carbohydr Polym; 2018 Feb; 181():579-586. PubMed ID: 29254010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylcellulose Based Thermally Reversible Hydrogels.
    Forghani A; Devireddy R
    Methods Mol Biol; 2018; 1773():41-51. PubMed ID: 29687380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property.
    Liu Z; Yao P
    Carbohydr Polym; 2015 Nov; 132():490-8. PubMed ID: 26256374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose.
    Dos Santos Carvalho JD; Rabelo RS; Hubinger MD
    Int J Biol Macromol; 2022 Jun; 209(Pt A):367-375. PubMed ID: 35413310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.
    Sangfai T; Tantishaiyakul V; Hirun N; Li L
    AAPS PharmSciTech; 2017 Apr; 18(3):605-616. PubMed ID: 27170164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels.
    Yeo YH; Park WH
    Carbohydr Polym; 2021 Apr; 258():117705. PubMed ID: 33593575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials.
    Gold GT; Varma DM; Harbottle D; Gupta MS; Stalling SS; Taub PJ; Nicoll SB
    J Biomed Mater Res A; 2014 Dec; 102(12):4536-44. PubMed ID: 24677805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels.
    Varshosaz J; Sajadi-Javan ZS; Kouhi M; Mirian M
    Int J Biol Macromol; 2021 Dec; 192():869-882. PubMed ID: 34634330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.
    Payne C; Dolan EB; O'Sullivan J; Cryan SA; Kelly HM
    Drug Deliv Transl Res; 2017 Feb; 7(1):132-146. PubMed ID: 27924469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels.
    Bhowmik M; Bain MK; Ghosh LK; Chattopadhyay D
    Pharm Dev Technol; 2011 Aug; 16(4):385-91. PubMed ID: 20429816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.