BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26984360)

  • 21. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.
    Tomsic M; Guillot S; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2009 Aug; 25(16):9525-34. PubMed ID: 19505132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration.
    Kim MH; Kim BS; Park H; Lee J; Park WH
    Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials.
    Bonetti L; De Nardo L; Farè S
    Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.
    Wang T; Chen L; Shen T; Wu D
    Int J Biol Macromol; 2016 Dec; 93(Pt A):775-782. PubMed ID: 27640090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment.
    Schmaljohann D; Oswald J; Jørgensen B; Nitschke M; Beyerlein D; Werner C
    Biomacromolecules; 2003; 4(6):1733-9. PubMed ID: 14606903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.
    Lee W; Park J
    Sci Rep; 2016 Jul; 6():29408. PubMed ID: 27381562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose.
    Kim MH; Park H; Shin JY; Park WH
    Carbohydr Polym; 2018 Sep; 196():414-421. PubMed ID: 29891313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid).
    Wei W; Qi X; Liu Y; Li J; Hu X; Zuo G; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1182-92. PubMed ID: 26590634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agarose and methylcellulose hydrogel blends for nerve regeneration applications.
    Martin BC; Minner EJ; Wiseman SL; Klank RL; Gilbert RJ
    J Neural Eng; 2008 Jun; 5(2):221-31. PubMed ID: 18503105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel.
    Yang MJ; Chen CH; Lin PJ; Huang CH; Chen W; Sung HW
    Biomacromolecules; 2007 Sep; 8(9):2746-52. PubMed ID: 17676800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium phosphate incorporated in silk fibroin/methylcellulose based injectable hydrogel: Preparation, characterization, and in vitro biological evaluation for bone defect treatment.
    Phewchan P; Laoruengthana A; Tiyaboonchai W
    J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1640-1652. PubMed ID: 37194686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization.
    Wei W; Hu X; Qi X; Yu H; Liu Y; Li J; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Jan; 125():1-11. PubMed ID: 25460596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An injectable, degradable hydrogel plug for tracheal occlusion in congenital diaphragmatic hernia (CDH).
    Campiglio CE; Villonio M; Dellacà RL; Mosca F; Draghi L
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():430-439. PubMed ID: 30889717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoresponsive hydrogel of diblock methylcellulose: formation of ribbonlike supramolecular nanostructures by self-assembly.
    Nakagawa A; Steiniger F; Richter W; Koschella A; Heinze T; Kamitakahara H
    Langmuir; 2012 Aug; 28(34):12609-18. PubMed ID: 22852550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physico-rheological and biological aspects.
    Das B; Basu A; Maji S; Dutta K; Dewan M; Adhikary A; Maiti TK; Chattopadhyay D
    Carbohydr Polym; 2020 Jun; 237():116146. PubMed ID: 32241450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel.
    Liang HF; Hong MH; Ho RM; Chung CK; Lin YH; Chen CH; Sung HW
    Biomacromolecules; 2004; 5(5):1917-25. PubMed ID: 15360306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry.
    Rashad A; Mustafa K; Heggset EB; Syverud K
    Biomacromolecules; 2017 Apr; 18(4):1238-1248. PubMed ID: 28263573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.
    Joshi SC; Liang CM; Lam YC
    J Biomater Sci Polym Ed; 2008; 19(12):1611-23. PubMed ID: 19017474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications.
    Sá-Lima H; Tuzlakoglu K; Mano JF; Reis RL
    J Biomed Mater Res A; 2011 Sep; 98(4):596-603. PubMed ID: 21721116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.