These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26984488)

  • 1. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.
    Ludwig B; Zheng Z; Shou W; Wang Y; Pan H
    Sci Rep; 2016 Mar; 6():23150. PubMed ID: 26984488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in Solvent-Free Methods for Manufacturing Electrodes and Electrolytes for Lithium-Based Batteries.
    Verdier N; Foran G; Lepage D; Prébé A; Aymé-Perrot D; Dollé M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through Dry-Spraying Manufacturing.
    Liu J; Ludwig B; Liu Y; Pan H; Wang Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25081-25089. PubMed ID: 31149798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiI-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries.
    Choi SJ; Choi SH; Bui AD; Lee YJ; Lee SM; Shin HC; Ha YC
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31404-31412. PubMed ID: 30148608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Free Fabrication of Thick Electrodes in Thermoplastic Binders for High Energy Density Lithium-Ion Batteries.
    Kim HM; Yoo BI; Yi JW; Choi MJ; Yoo JK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
    Stein M; Chen CF; Robles DJ; Rhodes C; Mukherjee PP
    J Vis Exp; 2016 Feb; (108):e53490. PubMed ID: 26863503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic Deposition for Lithium-Ion Battery Electrode Manufacture.
    Lalau CC; Low CTJ
    Batter Supercaps; 2019 Jun; 2(6):551-559. PubMed ID: 31894203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-Free Processed Cathode Slurry with Carbon Nanotube Conductors for Li-Ion Batteries.
    Park G; Kim HS; Lee KJ
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS.
    Kim K; Byun S; Choi J; Hong S; Ryou MH; Lee YM
    Chemphyschem; 2018 Jul; 19(13):1627-1634. PubMed ID: 29603536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication.
    Ryu M; Hong YK; Lee SY; Park JH
    Nat Commun; 2023 Mar; 14(1):1316. PubMed ID: 36899006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the mixing sequence on the graphite dispersion and resistance of lithium-ion battery anodes.
    Kitamura K; Tanaka M; Mori T
    J Colloid Interface Sci; 2022 Nov; 625():136-144. PubMed ID: 35716609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.
    Gaikwad AM; Arias AC
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6390-6400. PubMed ID: 28151639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable Protein-Based Binder for Lithium-Sulfur Cathodes Processed by a Solvent-Free Dry-Coating Method.
    Schmidt F; Kirchhoff S; Jägle K; De A; Ehrling S; Härtel P; Dörfler S; Abendroth T; Schumm B; Althues H; Kaskel S
    ChemSusChem; 2022 Nov; 15(22):e202201320. PubMed ID: 36169208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Dry-Pressed Electrodes Based on Holey Graphene.
    Lin Y; Plaza-Rivera CO; Hu L; Connell JW
    Acc Chem Res; 2022 Oct; 55(20):3020-3031. PubMed ID: 36173244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
    Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G
    ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Water-Based Lithium Titanate Electrode Processing: The Role of pH and Binder Molecular Structure.
    Carvalho DV; Loeffler N; Kim GT; Marinaro M; Wohlfahrt-Mehrens M; Passerini S
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.
    Yang Y; Chen D; Liu B; Zhao J
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7497-504. PubMed ID: 25816108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication.
    Fei L; Yoo SH; Villamayor RA; Williams BP; Gong SY; Park S; Shin K; Joo YL
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9738-9746. PubMed ID: 28240548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.