These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26984498)

  • 41. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.
    Stiel AC; Andresen M; Bock H; Hilbert M; Schilde J; Schönle A; Eggeling C; Egner A; Hell SW; Jakobs S
    Biophys J; 2008 Sep; 95(6):2989-97. PubMed ID: 18658221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy.
    Duwé S; De Zitter E; Gielen V; Moeyaert B; Vandenberg W; Grotjohann T; Clays K; Jakobs S; Van Meervelt L; Dedecker P
    ACS Nano; 2015 Oct; 9(10):9528-41. PubMed ID: 26308583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concepts for nanoscale resolution in fluorescence microscopy.
    Hell SW; Dyba M; Jakobs S
    Curr Opin Neurobiol; 2004 Oct; 14(5):599-609. PubMed ID: 15464894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Breaking the diffraction barrier in fluorescence microscopy by optical shelving.
    Bretschneider S; Eggeling C; Hell SW
    Phys Rev Lett; 2007 May; 98(21):218103. PubMed ID: 17677813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light-sheet-based fluorescence microscopy for three-dimensional imaging of biological samples.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):1-8. PubMed ID: 24371323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. rsEGFP2 enables fast RESOLFT nanoscopy of living cells.
    Grotjohann T; Testa I; Reuss M; Brakemann T; Eggeling C; Hell SW; Jakobs S
    Elife; 2012 Dec; 1():e00248. PubMed ID: 23330067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoscopy with more than 100,000 'doughnuts'.
    Chmyrov A; Keller J; Grotjohann T; Ratz M; d'Este E; Jakobs S; Eggeling C; Hell SW
    Nat Methods; 2013 Aug; 10(8):737-40. PubMed ID: 23832150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet.
    Gao L
    Opt Express; 2015 Mar; 23(5):6102-11. PubMed ID: 25836834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers.
    Fölling J; Belov V; Riedel D; Schönle A; Egner A; Eggeling C; Bossi M; Hell SW
    Chemphyschem; 2008 Feb; 9(2):321-6. PubMed ID: 18200483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient fluorescence inhibition patterns for RESOLFT microscopy.
    Keller J; Schönle A; Hell SW
    Opt Express; 2007 Mar; 15(6):3361-71. PubMed ID: 19532577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy.
    Andresen M; Stiel AC; Fölling J; Wenzel D; Schönle A; Egner A; Eggeling C; Hell SW; Jakobs S
    Nat Biotechnol; 2008 Sep; 26(9):1035-40. PubMed ID: 18724362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing chromatic optical retarder stacks for segmented next-generation easySTED phase plates.
    Engelhardt J; Ellerhoff B; Gürth CM; Sahl SJ; Hell SW
    J Microsc; 2022 Nov; 288(2):142-150. PubMed ID: 36106606
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family.
    Wang S; Shuai Y; Sun C; Xue B; Hou Y; Su X; Sun Y
    ACS Sens; 2018 Nov; 3(11):2269-2277. PubMed ID: 30346738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting resolution and image quality in RESOLFT and other point scanning microscopes [Invited].
    Bodén A; Casas Moreno X; Cooper BK; York AG; Testa I
    Biomed Opt Express; 2020 May; 11(5):2313-2327. PubMed ID: 32499925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axial plane single-molecule super-resolution microscopy of whole cells.
    An S; Ziegler KF; Zhang P; Wang Y; Kwok T; Xu F; Bi C; Matosevic S; Yin P; Li T; Huang F
    Biomed Opt Express; 2020 Jan; 11(1):461-479. PubMed ID: 32010528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Super-resolution Microscopy.
    Frawley AT; Leslie KG; Wycisk V; Galiani S; Shrestha D; Eggeling C; Anderson HL
    Chemphyschem; 2023 Jun; 24(12):e202300125. PubMed ID: 36946252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy.
    Fu Q; Martin BL; Matus DQ; Gao L
    Nat Commun; 2016 Mar; 7():11088. PubMed ID: 27004937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.
    Meddens MB; Liu S; Finnegan PS; Edwards TL; James CD; Lidke KA
    Biomed Opt Express; 2016 Jun; 7(6):2219-36. PubMed ID: 27375939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical study of transient absorption saturation in single-layer graphene for optical nanoscopy applications.
    Kariman BS; Diaspro A; Bianchini P
    Sci Rep; 2024 Apr; 14(1):8392. PubMed ID: 38600103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double-helix enhanced axial localization in STED nanoscopy.
    Laporte GP; Conkey DB; Vasdekis A; Piestun R; Psaltis D
    Opt Express; 2013 Dec; 21(25):30984-92. PubMed ID: 24514671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.