These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26984498)

  • 61. Imaging cellular spheroids with a single (selective) plane illumination microscope.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):106-13. PubMed ID: 24371324
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selectable light-sheet uniformity using tuned axial scanning.
    Duocastella M; Arnold CB; Puchalla J
    Microsc Res Tech; 2017 Feb; 80(2):250-259. PubMed ID: 28132409
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Super-resolution Microscopy.
    Frawley AT; Leslie KG; Wycisk V; Galiani S; Shrestha D; Eggeling C; Anderson HL
    Chemphyschem; 2023 Jun; 24(12):e202300125. PubMed ID: 36946252
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluorescence microscopy beyond the diffraction limit.
    Heilemann M
    J Biotechnol; 2010 Sep; 149(4):243-51. PubMed ID: 20347891
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Imaging MDCK cysts with a single (selective) plane illumination microscope.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):114-8. PubMed ID: 24371325
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Three-Dimensional Superlocalization Imaging of Gliding Mycoplasma mobile by Extraordinary Light Transmission through Arrayed Nanoholes.
    Lee W; Kinosita Y; Oh Y; Mikami N; Yang H; Miyata M; Nishizaka T; Kim D
    ACS Nano; 2015 Nov; 9(11):10896-908. PubMed ID: 26469129
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.
    Ma Q; Khademhosseinieh B; Huang E; Qian H; Bakowski MA; Troemel ER; Liu Z
    Sci Rep; 2016 Aug; 6():31445. PubMed ID: 27527813
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue.
    Spille JH; Kaminski T; Königshoven HP; Kubitscheck U
    Opt Express; 2012 Aug; 20(18):19697-707. PubMed ID: 23037022
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fluorescent proteins for live-cell imaging with super-resolution.
    Nienhaus K; Nienhaus GU
    Chem Soc Rev; 2014 Feb; 43(4):1088-106. PubMed ID: 24056711
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells.
    Tiwari DK; Nagai T
    Dev Growth Differ; 2013 May; 55(4):491-507. PubMed ID: 23635320
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores.
    van de Linde S; Sauer M; Heilemann M
    J Struct Biol; 2008 Dec; 164(3):250-4. PubMed ID: 18790061
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.
    Chin LK; Lee CH; Chen BC
    Lab Chip; 2016 May; 16(11):2014-24. PubMed ID: 27121367
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single-molecule super-resolution light-sheet microscopy.
    Hu YS; Zimmerley M; Li Y; Watters R; Cang H
    Chemphyschem; 2014 Mar; 15(4):577-86. PubMed ID: 24615819
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
    Duan C; Adam V; Byrdin M; Ridard J; Kieffer-Jaquinod S; Morlot C; Arcizet D; Demachy I; Bourgeois D
    J Am Chem Soc; 2013 Oct; 135(42):15841-50. PubMed ID: 24059326
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Far-field optical nanoscopy.
    Hell SW
    Science; 2007 May; 316(5828):1153-8. PubMed ID: 17525330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Super-resolution nonlinear photothermal microscopy.
    Nedosekin DA; Galanzha EI; Dervishi E; Biris AS; Zharov VP
    Small; 2014 Jan; 10(1):135-42. PubMed ID: 23864531
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):498-520. PubMed ID: 23734025
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems.
    Masullo LA; Bodén A; Pennacchietti F; Coceano G; Ratz M; Testa I
    Nat Commun; 2018 Aug; 9(1):3281. PubMed ID: 30115928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Superresolution imaging of biological nanostructures by spectral precision distance microscopy.
    Cremer C; Kaufmann R; Gunkel M; Pres S; Weiland Y; Müller P; Ruckelshausen T; Lemmer P; Geiger F; Degenhard S; Wege C; Lemmermann NA; Holtappels R; Strickfaden H; Hausmann M
    Biotechnol J; 2011 Sep; 6(9):1037-51. PubMed ID: 21910256
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Macromolecular-scale resolution in biological fluorescence microscopy.
    Donnert G; Keller J; Medda R; Andrei MA; Rizzoli SO; Lührmann R; Jahn R; Eggeling C; Hell SW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11440-5. PubMed ID: 16864773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.