These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26984752)

  • 1. Spatial proximity as a determinant of context-specific attentional settings.
    Diede NT; Bugg JM
    Atten Percept Psychophys; 2016 Jul; 78(5):1255-66. PubMed ID: 26984752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundary conditions for the influence of spatial proximity on context-specific attentional settings.
    Diede NT; Bugg JM
    Atten Percept Psychophys; 2019 Jul; 81(5):1386-1404. PubMed ID: 30783908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of location-specific control to untrained locations.
    Weidler BJ; Bugg JM
    Q J Exp Psychol (Hove); 2016 Nov; 69(11):2202-17. PubMed ID: 26800157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry.
    Diede NT; Bugg JM
    J Exp Psychol Learn Mem Cogn; 2017 May; 43(5):824-835. PubMed ID: 28068124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-specific proportion congruent effects: Compound-cue contingency learning in disguise.
    Schmidt JR; Lemercier C
    Q J Exp Psychol (Hove); 2019 May; 72(5):1119-1130. PubMed ID: 29926760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of context-driven control revealed through the analysis of sequential congruency effects.
    Hutcheon TG; Spieler DH; Eldar M
    Acta Psychol (Amst); 2017 Jul; 178():107-113. PubMed ID: 28666107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection history modulates the effects of dual mechanisms on flanker interference.
    Yeh YY; Lee SM; Chen YH; Chen Z
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):2038-55. PubMed ID: 25111666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-based and spatial attentional selection in visual working memory.
    Heuer A; Schubö A
    Mem Cognit; 2016 May; 44(4):621-32. PubMed ID: 26754949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What can be learned in a context-specific proportion congruence paradigm? Implications for reproducibility.
    Bugg JM; Suh J; Colvett JS; Lehmann SG
    J Exp Psychol Hum Percept Perform; 2020 Sep; 46(9):1029-1050. PubMed ID: 32584123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strategic control of prospective memory monitoring in response to complex and probabilistic contextual cues.
    Bugg JM; Ball BH
    Mem Cognit; 2017 Jul; 45(5):755-775. PubMed ID: 28275948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related differences in the attentional white bear.
    Ashinoff BK; Tsal Y; Mevorach C
    Psychon Bull Rev; 2019 Dec; 26(6):1870-1888. PubMed ID: 31183745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slower attentional disengagement but faster perceptual processing near the hand.
    Thomas T; Sunny MM
    Acta Psychol (Amst); 2017 Mar; 174():40-47. PubMed ID: 28147264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transfer of location-based control requires location-based conflict.
    Pickel L; Pratt J; Weidler BJ
    Atten Percept Psychophys; 2019 Nov; 81(8):2788-2797. PubMed ID: 31309529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurobehavioral correlates of the rapid formation of the symbolic control of visuospatial attention.
    Trujillo LT; Schnyer DM
    Psychophysiology; 2011 Sep; 48(9):1227-41. PubMed ID: 21446995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
    Dombert PL; Kuhns A; Mengotti P; Fink GR; Vossel S
    Neuroimage; 2016 Nov; 142():553-564. PubMed ID: 27523448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution of attentional bias in visuo-spatial working memory following multiple cues.
    Botta F; Lupiáñez J
    Acta Psychol (Amst); 2014 Jul; 150():1-13. PubMed ID: 24793127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccade execution suppresses discrimination at distractor locations rather than enhancing the saccade goal location.
    Khan AZ; Blohm G; Pisella L; Munoz DP
    Eur J Neurosci; 2015 Jun; 41(12):1624-34. PubMed ID: 25891002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attentional inertia and delayed orienting of spatial attention in task-switching.
    Longman CS; Lavric A; Munteanu C; Monsell S
    J Exp Psychol Hum Percept Perform; 2014 Aug; 40(4):1580-602. PubMed ID: 24842065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.