These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26984940)

  • 1. Demonstration of Sn-seeded GaSb homo- and GaAs-GaSb heterostructural nanowires.
    Tornberg M; Mårtensson EK; Zamani RR; Lehmann S; Dick KA; Ghalamestani SG
    Nanotechnology; 2016 Apr; 27(17):175602. PubMed ID: 26984940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can antimonide-based nanowires form wurtzite crystal structure?
    Gorji Ghalamestani S; Lehmann S; Dick KA
    Nanoscale; 2016 Feb; 8(5):2778-86. PubMed ID: 26763161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarity and growth directions in Sn-seeded GaSb nanowires.
    Zamani RR; Gorji Ghalamestani S; Niu J; Sköld N; Dick KA
    Nanoscale; 2017 Mar; 9(9):3159-3168. PubMed ID: 28220179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.
    Yuan X; Caroff P; Wong-Leung J; Tan HH; Jagadish C
    Nanoscale; 2015 Mar; 7(11):4995-5003. PubMed ID: 25692266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sn-Seeded GaAs Nanowires as Self-Assembled Radial p-n Junctions.
    Sun R; Jacobsson D; Chen IJ; Nilsson M; Thelander C; Lehmann S; Dick KA
    Nano Lett; 2015 Jun; 15(6):3757-62. PubMed ID: 25989532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires.
    Gustafsson A; Hillerich K; Messing ME; Storm K; Dick KA; Deppert K; Bolinsson J
    Nanotechnology; 2012 Jul; 23(26):265704. PubMed ID: 22699683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy.
    Wen L; Pan D; Liao D; Zhao J
    Nanotechnology; 2020 Apr; 31(15):155601. PubMed ID: 31783375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sn-seeded GaAs nanowires grown by MOVPE.
    Sun R; Vainorius N; Jacobsson D; Pistol ME; Lehmann S; Dick KA
    Nanotechnology; 2016 May; 27(21):215603. PubMed ID: 27087548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition.
    Ji X; Yang X; Yang T
    Nanoscale Res Lett; 2017 Dec; 12(1):428. PubMed ID: 28655220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes.
    Zannier V; Grillo V; Martelli F; Plaisier JR; Lausi A; Rubini S
    Nanoscale; 2014 Jul; 6(14):8392-9. PubMed ID: 24942288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures.
    Shi S; Zhang Z; Lu Z; Shu H; Chen P; Li N; Zou J; Lu W
    Nanoscale Res Lett; 2015; 10():108. PubMed ID: 25852403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using seed particle composition to control structural and optical properties of GaN nanowires.
    Zhou X; Chesin J; Crawford S; Gradečak S
    Nanotechnology; 2012 Jul; 23(28):285603. PubMed ID: 22717518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement.
    Fahed M; Desplanque L; Troadec D; Patriarche G; Wallart X
    Nanotechnology; 2016 Dec; 27(50):505301. PubMed ID: 27861165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90° Misfit Dislocations.
    Jallipalli A; Balakrishnan G; Huang Sh; Rotter T; Nunna K; Liang B; Dawson L; Huffaker D
    Nanoscale Res Lett; 2009 Aug; 4(12):1458-62. PubMed ID: 20652143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and composition controlled Ga(x)In(1-x)Sb nanowires: understanding ternary antimonide growth.
    Ghalamestani SG; Ek M; Ghasemi M; Caroff P; Johansson J; Dick KA
    Nanoscale; 2014 Jan; 6(2):1086-92. PubMed ID: 24296789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroepitaxial growth of GaSb nanotrees with an ultra-low reflectivity in a broad spectral range.
    Yan C; Li X; Zhou K; Pan A; Werner P; Mensah SL; Vogel AT; Schmidt V
    Nano Lett; 2012 Apr; 12(4):1799-805. PubMed ID: 22432874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.