These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26985595)

  • 1. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.
    Zhu B; Xu Z; Wang C; Gao Y
    Nano Lett; 2016 Apr; 16(4):2628-32. PubMed ID: 26985595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere.
    Liu L; Yu M; Hou B; Wang Q; Zhu B; Jia L; Li D
    Nanoscale; 2019 Apr; 11(16):8037-8046. PubMed ID: 30968086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle shapes by using Wulff constructions and first-principles calculations.
    Barmparis GD; Lodziana Z; Lopez N; Remediakis IN
    Beilstein J Nanotechnol; 2015; 6():361-8. PubMed ID: 25821675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape control in concave metal nanoparticles by etching.
    Li Q; Rellán-Piñeiro M; Almora-Barrios N; Garcia-Ratés M; Remediakis IN; López N
    Nanoscale; 2017 Sep; 9(35):13089-13094. PubMed ID: 28848974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-Dependent Single-Electron Levels for Au Nanoparticles.
    Barmparis GD; Kopidakis G; Remediakis IN
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling Morphological and Topological Energy Contributions of Metal Nanoparticles.
    Vega L; Viñes F; Neyman KM
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles.
    Kenmoe S; Biedermann PU
    J Chem Phys; 2018 Feb; 148(5):054701. PubMed ID: 29421882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles.
    Sharma S
    J Colloid Interface Sci; 2015 Mar; 441():25-9. PubMed ID: 25485808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Hydrogenation of Cinnamaldehyde over the Stepped and Plane Surface of Pd Nanoparticles with Controlled Morphologies by CO Chemisorption.
    Murata K; Ogura K; Ohyama J; Sawabe K; Yamamoto Y; Arai S; Satsuma A
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26002-26012. PubMed ID: 32429665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M = Fe, Co and Ni).
    Abdelsayed V; Glaspell G; Nguyen M; Howe JM; El-Shall MS
    Faraday Discuss; 2008; 138():163-80; discussion 211-23, 433-4. PubMed ID: 18447015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into Spectator-Directed Catalysis: CO Adsorption on Amine-Capped Platinum Nanoparticles on Oxide Supports.
    Siemer M; Tomaschun G; Klüner T; Christopher P; Al-Shamery K
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27765-27776. PubMed ID: 32432456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The H
    Tang Z; Zhang Y; Deng X; Dai Y; Zhang W; Fan F; Qing B; Zhu C; Fan J; Shi Y
    Dalton Trans; 2018 Nov; 47(43):15331-15337. PubMed ID: 30207336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.
    Kim KC; Dai B; Karl Johnson J; Sholl DS
    Nanotechnology; 2009 May; 20(20):204001. PubMed ID: 19420649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces.
    Kabalan L; Kowalec I; Catlow CRA; Logsdail AJ
    Phys Chem Chem Phys; 2021 Jul; 23(27):14649-14661. PubMed ID: 34212951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional affinity of a spherical Gold nanoparticle for the adsorption of DNA bases.
    Farrokhpour H; Abedi S; Jouypazadeh H
    Colloids Surf B Biointerfaces; 2019 Jan; 173():493-503. PubMed ID: 30336411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First principles investigations of Pd-on-Au nanostructures for trichloroethene catalytic removal from groundwater.
    Andersin J; Honkala K
    Phys Chem Chem Phys; 2011 Jan; 13(4):1386-94. PubMed ID: 21152633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.