These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26985713)

  • 1. High-speed detection of DNA translocation in nanopipettes.
    Fraccari RL; Ciccarella P; Bahrami A; Carminati M; Ferrari G; Albrecht T
    Nanoscale; 2016 Apr; 8(14):7604-11. PubMed ID: 26985713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K(+) , Na(+) , and Mg(2+) on DNA translocation in silicon nitride nanopores.
    Uplinger J; Thomas B; Rollings R; Fologea D; McNabb D; Li J
    Electrophoresis; 2012 Dec; 33(23):3448-57. PubMed ID: 23147752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-driven transport of ions and DNA through nanocapillaries.
    Steinbock LJ; Lucas A; Otto O; Keyser UF
    Electrophoresis; 2012 Dec; 33(23):3480-7. PubMed ID: 23147888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free in-flow detection of single DNA molecules using glass nanopipettes.
    Gong X; Patil AV; Ivanov AP; Kong Q; Gibb T; Dogan F; deMello AJ; Edel JB
    Anal Chem; 2014 Jan; 86(1):835-41. PubMed ID: 24328180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-bandwidth detection of short DNA in nanopipettes.
    Fraccari RL; Carminati M; Piantanida G; Leontidou T; Ferrari G; Albrecht T
    Faraday Discuss; 2016 Dec; 193():459-470. PubMed ID: 27711887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slowing down DNA translocation through a nanopore in lithium chloride.
    Kowalczyk SW; Wells DB; Aksimentiev A; Dekker C
    Nano Lett; 2012 Feb; 12(2):1038-44. PubMed ID: 22229707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh.
    Yan H; Zhou D; Shi B; Zhang Z; Tian H; Yu L; Wang Y; Guan X; Wang Z; Wang D
    Eur Biophys J; 2019 Apr; 48(3):261-266. PubMed ID: 30826854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt dependence of ion transport and DNA translocation through solid-state nanopores.
    Smeets RM; Keyser UF; Krapf D; Wu MY; Dekker NH; Dekker C
    Nano Lett; 2006 Jan; 6(1):89-95. PubMed ID: 16402793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes.
    Vitol EA; Orynbayeva Z; Bouchard MJ; Azizkhan-Clifford J; Friedman G; Gogotsi Y
    ACS Nano; 2009 Nov; 3(11):3529-36. PubMed ID: 19891490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanopore translocation in glutamate solutions.
    Plesa C; van Loo N; Dekker C
    Nanoscale; 2015 Aug; 7(32):13605-9. PubMed ID: 26206066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore.
    Ghosal S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061916. PubMed ID: 18233878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent diffusion in molten LiCl-KCl: dynamical correlations and divergent Maxwell-Stefan diffusivities.
    Chakraborty B; Wang J; Eapen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052312. PubMed ID: 23767545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopipettes: a potential tool for DNA detection.
    Wang Z; Liu Y; Yu L; Li Y; Qian G; Chang S
    Analyst; 2019 Aug; 144(17):5037-5047. PubMed ID: 31290857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 microm.
    Nakabayashi H; Yamada A; Noba M; Kobayashi Y; Konno M; Nagao D
    Langmuir; 2010 May; 26(10):7512-5. PubMed ID: 20163080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane.
    Kececi K; San N; Kaya D
    Talanta; 2015 Nov; 144():268-74. PubMed ID: 26452821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling polymer translocation and ion transport via charge correlations.
    Buyukdagli S; Ala-Nissila T
    Langmuir; 2014 Nov; 30(43):12907-15. PubMed ID: 25310861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling DNA translocation through gate modulation of nanopore wall surface charges.
    He Y; Tsutsui M; Fan C; Taniguchi M; Kawai T
    ACS Nano; 2011 Jul; 5(7):5509-18. PubMed ID: 21662982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and sequencing DNA using nanopores and nanodetectors.
    Thompson JF; Oliver JS
    Electrophoresis; 2012 Dec; 33(23):3429-36. PubMed ID: 23208922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slowing down DNA translocation through solid-state nanopores by pressure.
    Zhang H; Zhao Q; Tang Z; Liu S; Li Q; Fan Z; Yang F; You L; Li X; Zhang J; Yu D
    Small; 2013 Dec; 9(24):4112-7. PubMed ID: 23828716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.