These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26985718)

  • 1. Human Hippocampal Theta Oscillations during Movement without Visual Cues.
    Qasim SE; Jacobs J
    Neuron; 2016 Mar; 89(6):1121-1123. PubMed ID: 26985718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation.
    Vass LK; Copara MS; Seyal M; Shahlaie K; Farias ST; Shen PY; Ekstrom AD
    Neuron; 2016 Mar; 89(6):1180-1186. PubMed ID: 26924436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of frontal-midline delta-theta and posterior alpha oscillations: A mobile EEG study.
    Liang M; Starrett MJ; Ekstrom AD
    Psychophysiology; 2018 Sep; 55(9):e13090. PubMed ID: 29682758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of low- and high-frequency oscillations in the human hippocampus for encoding environmental novelty during a spatial navigation task.
    Park J; Lee H; Kim T; Park GY; Lee EM; Baek S; Ku J; Kim IY; Kim SI; Jang DP; Kang JK
    Hippocampus; 2014 Nov; 24(11):1341-52. PubMed ID: 24910318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation.
    Miller J; Watrous AJ; Tsitsiklis M; Lee SA; Sheth SA; Schevon CA; Smith EH; Sperling MR; Sharan A; Asadi-Pooya AA; Worrell GA; Meisenhelter S; Inman CS; Davis KA; Lega B; Wanda PA; Das SR; Stein JM; Gorniak R; Jacobs J
    Nat Commun; 2018 Jun; 9(1):2423. PubMed ID: 29930307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric behaviours of brain oscillations in the human hippocampus during spatial navigation tasks.
    Kang JK; Lee EM; Kim D; Hye Lee S; Kim T; Park YM; Park J; Kim SI; Kim IY; Jang DP
    Neuroreport; 2016 Feb; 27(3):192-6. PubMed ID: 26730515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human hippocampal theta power indicates movement onset and distance travelled.
    Bush D; Bisby JA; Bird CM; Gollwitzer S; Rodionov R; Diehl B; McEvoy AW; Walker MC; Burgess N
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12297-12302. PubMed ID: 29078334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation.
    Bohbot VD; Copara MS; Gotman J; Ekstrom AD
    Nat Commun; 2017 Feb; 8():14415. PubMed ID: 28195129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are visual cues helpful for virtual spatial navigation and spatial memory in patients with mild cognitive impairment or Alzheimer's disease?
    Cogné M; Auriacombe S; Vasa L; Tison F; Klinger E; Sauzéon H; Joseph PA; N Kaoua B
    Neuropsychology; 2018 May; 32(4):385-400. PubMed ID: 29809030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.
    Kober SE; Neuper C
    Int J Psychophysiol; 2011 Mar; 79(3):347-55. PubMed ID: 21146566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing.
    Hunsaker MR; Kesner RP
    Neurobiol Learn Mem; 2018 Jan; 147():90-119. PubMed ID: 29222057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionally distinct high and low theta oscillations in the human hippocampus.
    Goyal A; Miller J; Qasim SE; Watrous AJ; Zhang H; Stein JM; Inman CS; Gross RE; Willie JT; Lega B; Lin JJ; Sharan A; Wu C; Sperling MR; Sheth SA; McKhann GM; Smith EH; Schevon C; Jacobs J
    Nat Commun; 2020 May; 11(1):2469. PubMed ID: 32424312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
    Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y
    eNeuro; 2017; 4(3):. PubMed ID: 28484738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How cognitive aging affects multisensory integration of navigational cues.
    Bates SL; Wolbers T
    Neurobiol Aging; 2014 Dec; 35(12):2761-2769. PubMed ID: 24952995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging and spatial cues influence the updating of navigational memories.
    Merhav M; Wolbers T
    Sci Rep; 2019 Aug; 9(1):11469. PubMed ID: 31391574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the hippocampus in navigation is memory.
    Eichenbaum H
    J Neurophysiol; 2017 Apr; 117(4):1785-1796. PubMed ID: 28148640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial encoding in primate hippocampus during free navigation.
    Courellis HS; Nummela SU; Metke M; Diehl GW; Bussell R; Cauwenberghs G; Miller CT
    PLoS Biol; 2019 Dec; 17(12):e3000546. PubMed ID: 31815940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural circuitry supporting successful spatial navigation despite variable movement speeds.
    Sheeran WM; Ahmed OJ
    Neurosci Biobehav Rev; 2020 Jan; 108():821-833. PubMed ID: 31760048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.