BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26986068)

  • 21. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging.
    Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I
    J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism.
    Heaster TM; Humayun M; Yu J; Beebe DJ; Skala MC
    Cancer Res; 2020 Dec; 80(23):5408-5423. PubMed ID: 33093167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time optical redox imaging of cartilage metabolic response to mechanical loading.
    Walsh SK; Skala MC; Henak CR
    Osteoarthritis Cartilage; 2019 Dec; 27(12):1841-1850. PubMed ID: 31513919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing.
    Stringari C; Abdeladim L; Malkinson G; Mahou P; Solinas X; Lamarre I; Brizion S; Galey JB; Supatto W; Legouis R; Pena AM; Beaurepaire E
    Sci Rep; 2017 Jun; 7(1):3792. PubMed ID: 28630487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH dependence of the fluorescence lifetime of FAD in solution and in cells.
    Islam MS; Honma M; Nakabayashi T; Kinjo M; Ohta N
    Int J Mol Sci; 2013 Jan; 14(1):1952-63. PubMed ID: 23334475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo.
    Shirmanova MV; Druzhkova IN; Lukina MM; Dudenkova VV; Ignatova NI; Snopova LB; Shcheslavskiy VI; Belousov VV; Zagaynova EV
    Sci Rep; 2017 Aug; 7(1):8911. PubMed ID: 28827680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.
    Lin KC; Lin YC; Chen SM
    Analyst; 2012 Jan; 137(1):186-94. PubMed ID: 22046584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
    Zhao Y; Zhang Z; Zou Y; Yang Y
    Antioxid Redox Signal; 2018 Jan; 28(3):213-229. PubMed ID: 28648094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.
    Rösner J; Liotta A; Schmitz D; Heinemann U; Kovács R
    J Neurosci Methods; 2013 Jan; 212(2):222-7. PubMed ID: 23142181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name.
    Sun H; Chen L; Cao S; Liang Y; Xu Y
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):273-286. PubMed ID: 31071451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple acyl-coenzyme A dehydrogenation disorder responsive to riboflavin: substrate oxidation, flavin metabolism, and flavoenzyme activities in fibroblasts.
    Rhead W; Roettger V; Marshall T; Amendt B
    Pediatr Res; 1993 Feb; 33(2):129-35. PubMed ID: 8433888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase in intracellular free/bound NAD[P]H as a cause of Cd-induced oxidative stress in the HepG(2) cells.
    Yang MS; Li D; Lin T; Zheng JJ; Zheng W; Qu JY
    Toxicology; 2008 May; 247(1):6-10. PubMed ID: 18336984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogenase encapsulation into red blood cells and regeneration of electron acceptor.
    Axley MJ; Dad LK; Harabin AL
    Biotechnol Appl Biochem; 1996 Oct; 24(2):95-100. PubMed ID: 8865603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level.
    Heaster TM; Walsh AJ; Zhao Y; Hiebert SW; Skala MC
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28485124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.
    Pavlides S; Vera I; Gandara R; Sneddon S; Pestell RG; Mercier I; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP
    Antioxid Redox Signal; 2012 Jun; 16(11):1264-84. PubMed ID: 21883043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.
    Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC
    Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.