These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26986305)
1. Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential. Nguyen PT; Challis KJ; Jack MW Phys Rev E; 2016 Feb; 93(2):022124. PubMed ID: 26986305 [TBL] [Abstract][Full Text] [Related]
2. Numerical study of the tight-binding approach to overdamped Brownian motion on a tilted periodic potential. Challis KJ Phys Rev E; 2016 Dec; 94(6-1):062123. PubMed ID: 28085380 [TBL] [Abstract][Full Text] [Related]
3. Tight-binding approach to overdamped Brownian motion on a multidimensional tilted periodic potential. Challis KJ; Jack MW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052102. PubMed ID: 23767482 [TBL] [Abstract][Full Text] [Related]
4. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells. Nguyen PT; Challis KJ; Jack MW Phys Rev E; 2016 Nov; 94(5-1):052127. PubMed ID: 27967196 [TBL] [Abstract][Full Text] [Related]
5. Tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor. Challis KJ Phys Rev E; 2018 Jun; 97(6-1):062158. PubMed ID: 30011495 [TBL] [Abstract][Full Text] [Related]
6. Energy transfer in a molecular motor in the Kramers regime. Challis KJ; Jack MW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042114. PubMed ID: 24229123 [TBL] [Abstract][Full Text] [Related]
7. Wigner function approach to the quantum Brownian motion of a particle in a potential. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961 [TBL] [Abstract][Full Text] [Related]
8. Approach to quantum Kramers' equation and barrier crossing dynamics. Banerjee D; Bag BC; Banik SK; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021109. PubMed ID: 11863505 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium master equation for interacting Brownian particles in a deep-well periodic potential. Jack MW; Deaker A Phys Rev E; 2022 May; 105(5-1):054150. PubMed ID: 35706257 [TBL] [Abstract][Full Text] [Related]
10. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008 [TBL] [Abstract][Full Text] [Related]
11. Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit. Coffey WT; Kalmykov YP; Titov SV; Cleary L J Chem Phys; 2009 Aug; 131(8):084101. PubMed ID: 19725602 [TBL] [Abstract][Full Text] [Related]
12. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
13. Brownian motion in inhomogeneous suspensions. Yang M; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630 [TBL] [Abstract][Full Text] [Related]
14. Quantum Brownian Motion at Strong Dissipation Probed by Superconducting Tunnel Junctions. Jäck B; Senkpiel J; Etzkorn M; Ankerhold J; Ast CR; Kern K Phys Rev Lett; 2017 Oct; 119(14):147702. PubMed ID: 29053289 [TBL] [Abstract][Full Text] [Related]
15. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment. Shit A; Ghosh P; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031125. PubMed ID: 21517472 [TBL] [Abstract][Full Text] [Related]
16. Entropy production of a Brownian ellipsoid in the overdamped limit. Marino R; Eichhorn R; Aurell E Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of barrierless and activated chemical reactions in a dispersive medium within the fractional diffusion equation approach. Seki K; Bagchi B; Tachiya M J Phys Chem B; 2008 May; 112(19):6107-13. PubMed ID: 18179196 [TBL] [Abstract][Full Text] [Related]
18. Multiple time-scale approach for a system of Brownian particles in a nonuniform temperature field. López C; Bettolo Marconi UM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021101. PubMed ID: 17358307 [TBL] [Abstract][Full Text] [Related]
19. Effective rate equations for the overdamped motion in fluctuating potentials. Mielke A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021106. PubMed ID: 11497561 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical master equation in Wigners phase space applied to Brownian motion in a periodic potential. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041117. PubMed ID: 17500875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]