These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26986318)

  • 21. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angular and position stability of a nanorod trapped in an optical tweezers.
    Bareil PB; Sheng Y
    Opt Express; 2010 Dec; 18(25):26388-98. PubMed ID: 21164989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Trapping, Optical Binding, and Rotational Dynamics of Silicon Nanowires in Counter-Propagating Beams.
    Donato MG; Brzobohatý O; Simpson SH; Irrera A; Leonardi AA; Lo Faro MJ; Svak V; Maragò OM; Zemánek P
    Nano Lett; 2019 Jan; 19(1):342-352. PubMed ID: 30525673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers.
    Mousavi SM; Reihani SNS; Anvari G; Anvari M; Alinezhad HG; Tabar MRR
    Sci Rep; 2017 Jul; 7(1):4832. PubMed ID: 28684757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating metal-oxide nanowires using counter-propagating optical line tweezers.
    van der Horst A; Campbell AI; van Vugt LK; Vanmaekelbergh DA; Dogterom M; van Blaaderen A
    Opt Express; 2007 Sep; 15(18):11629-39. PubMed ID: 19547523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parametric resonance of optically trapped aerosols.
    Di Leonardo R; Ruocco G; Leach J; Padgett MJ; Wright AJ; Girkin JM; Burnham DR; McGloin D
    Phys Rev Lett; 2007 Jul; 99(1):010601. PubMed ID: 17678143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-trap optical tweezers with real-time force clamp control.
    Wallin AE; Ojala H; Ziedaite G; Hæggström E
    Rev Sci Instrum; 2011 Aug; 82(8):083102. PubMed ID: 21895228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Helicity and Polarization Gradient Optical Trapping in Evanescent Fields.
    Lu J; Ginis V; Lim SWD; Capasso F
    Phys Rev Lett; 2023 Oct; 131(14):143803. PubMed ID: 37862648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colored noise in the fluctuations of an extended DNA molecule detected by optical trapping.
    Martínez IA; Raj S; Petrov D
    Eur Biophys J; 2012 Jan; 41(1):99-106. PubMed ID: 22045410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rotational dynamics of optically trapped nanofibers.
    Neves AA; Camposeo A; Pagliara S; Saija R; Borghese F; Denti P; Iatì MA; Cingolani R; Maragò OM; Pisignano D
    Opt Express; 2010 Jan; 18(2):822-30. PubMed ID: 20173904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time in situ calibration of an optically trapped probing system.
    Wan J; Huang Y; Jhiang S; Menq CH
    Appl Opt; 2009 Sep; 48(25):4832-41. PubMed ID: 19724324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High sensitivity, levitated microsphere apparatus for short-distance force measurements.
    Kawasaki A; Fieguth A; Priel N; Blakemore CP; Martin D; Gratta G
    Rev Sci Instrum; 2020 Aug; 91(8):083201. PubMed ID: 32872897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.