These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26986321)
1. Ab initio calculation of thermodynamic potentials and entropies for superionic water. French M; Desjarlais MP; Redmer R Phys Rev E; 2016 Feb; 93(2):022140. PubMed ID: 26986321 [TBL] [Abstract][Full Text] [Related]
2. Evidence and Stability Field of fcc Superionic Water Ice Using Static Compression. Weck G; Queyroux JA; Ninet S; Datchi F; Mezouar M; Loubeyre P Phys Rev Lett; 2022 Apr; 128(16):165701. PubMed ID: 35522490 [TBL] [Abstract][Full Text] [Related]
3. Superionic to superionic phase change in water: consequences for the interiors of uranus and neptune. Wilson HF; Wong ML; Militzer B Phys Rev Lett; 2013 Apr; 110(15):151102. PubMed ID: 25167242 [TBL] [Abstract][Full Text] [Related]
4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
5. Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential. Adachi Y; Koga K J Chem Phys; 2020 Sep; 153(11):114501. PubMed ID: 32962394 [TBL] [Abstract][Full Text] [Related]
6. The stability of FeH He Y; Kim DY; Struzhkin VV; Geballe ZM; Prakapenka V; Mao HK Sci Bull (Beijing); 2023 Jul; 68(14):1567-1573. PubMed ID: 37355390 [TBL] [Abstract][Full Text] [Related]
7. Proton dynamics and the phase diagram of dense water ice. Hernandez JA; Caracas R J Chem Phys; 2018 Jun; 148(21):214501. PubMed ID: 29884066 [TBL] [Abstract][Full Text] [Related]
8. Ultralow Melting Temperature of High-Pressure Face-Centered Cubic Superionic Ice. Niu C; Zhang H; Zhang J; Zeng Z; Wang X J Phys Chem Lett; 2022 Aug; 13(32):7448-7453. PubMed ID: 35930621 [TBL] [Abstract][Full Text] [Related]
10. Structure and dynamics of water plastic crystals from computer simulations. Henao A; Salazar-Rios JM; Guardia E; Pardo LC J Chem Phys; 2021 Mar; 154(10):104501. PubMed ID: 33722053 [TBL] [Abstract][Full Text] [Related]
11. Plastic deformation of superionic water ices. Matusalem F; Santos Rego J; de Koning M Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2203397119. PubMed ID: 36322744 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic properties of the Cu-Au system using a face-centered-cubic lattice model with a renormalized potential. Sahara R; Ichikawa H; Mizuseki H; Ohno K; Kubo H; Kawazoe Y J Chem Phys; 2004 May; 120(19):9297-301. PubMed ID: 15267866 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of high-pressure ice phases explored with atomistic simulations. Reinhardt A; Bethkenhagen M; Coppari F; Millot M; Hamel S; Cheng B Nat Commun; 2022 Aug; 13(1):4707. PubMed ID: 35948550 [TBL] [Abstract][Full Text] [Related]
15. X-ray scattering intensities of water at extreme pressure and temperature. Goldman N; Fried LE J Chem Phys; 2007 Apr; 126(13):134505. PubMed ID: 17430045 [TBL] [Abstract][Full Text] [Related]
16. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Millot M; Coppari F; Rygg JR; Correa Barrios A; Hamel S; Swift DC; Eggert JH Nature; 2019 May; 569(7755):251-255. PubMed ID: 31068720 [TBL] [Abstract][Full Text] [Related]
17. Universal features of the free-energy functional at the freezing transition for repulsive potentials. Verma A; Ford DM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051110. PubMed ID: 21728493 [TBL] [Abstract][Full Text] [Related]
18. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis. Paula Leite R; Santos-Flórez PA; de Koning M Phys Rev E; 2017 Sep; 96(3-1):032115. PubMed ID: 29346937 [TBL] [Abstract][Full Text] [Related]
19. First-principles calculation of entropy for liquid metals. Desjarlais MP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062145. PubMed ID: 24483423 [TBL] [Abstract][Full Text] [Related]