These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26986388)

  • 1. Stochastic analysis of nucleation rates.
    Johansson J
    Phys Rev E; 2016 Feb; 93(2):022801. PubMed ID: 26986388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unification of classical nucleation theories via a unified Itô-Stratonovich stochastic equation.
    Durán-Olivencia MA; Lutsko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032407. PubMed ID: 26465482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay.
    Frank TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011914. PubMed ID: 12241391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation.
    Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):062102. PubMed ID: 22304133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplicative Lévy processes: Itô versus Stratonovich interpretation.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051113. PubMed ID: 20364953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):020101. PubMed ID: 16196534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation.
    Sorokin MV; Dubinko VI; Borodin VA
    Phys Rev E; 2017 Jan; 95(1-1):012801. PubMed ID: 28208399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises.
    Méndez V; Denisov SI; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time evolution towards q-Gaussian stationary states through unified Itô-Stratonovich stochastic equation.
    dos Santos BC; Tsallis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061119. PubMed ID: 21230656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prescription-induced jump distributions in multiplicative Poisson processes.
    Suweis S; Porporato A; Rinaldo A; Maritan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061119. PubMed ID: 21797314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Giuggioli L; Neu Z
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient approach to nucleation and growth dynamics: stationary diffusion flux model.
    van Putten DS; Kalikmanov VI
    J Chem Phys; 2009 Apr; 130(16):164508. PubMed ID: 19405595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription.
    Arenas ZG; Barci DG; Tsallis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032118. PubMed ID: 25314406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions.
    Dornic I; Chaté H; Muñoz MA
    Phys Rev Lett; 2005 Mar; 94(10):100601. PubMed ID: 15783467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium transitions induced by the cross-correlation of white noises.
    Denisov SI; Vitrenko AN; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046132. PubMed ID: 14683027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the connection between dissipative particle dynamics and the Itô-Stratonovich dilemma.
    Farago O; Grønbech-Jensen N
    J Chem Phys; 2016 Feb; 144(8):084102. PubMed ID: 26931676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise.
    Kupferman R; Pavliotis GA; Stuart AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036120. PubMed ID: 15524600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.